449

Epidemiologic Characteristics of Healthcare-Associated Outbreaks and Lessons Learned from Multiple Outbreak Investigations Hajime Kanamori^{1,2} MD, PhD, MPH; David J. Weber^{1,2} MD, MPH; Maria F. Gergen¹, MT (ASCP); Lauren M. DiBiase^{1,2} MS;

1) Division of Infectious Diseases, Hospital Epidemiology, University of North Carolina Health Care; 2) Division of Infectious Diseases, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA

Background

- Single outbreaks due to a specific pathogen(s) and a reservoir have often been reported in healthcare settings.
- Healthcare-associated outbreaks not only may affect patients' morbidity and mortality but also may have severe repercussions in healthcare operations.
- Although there are many publications of outbreak investigations in a single hospital, they are likely to be substantially affected by publication bias with larger outbreaks (e.g., novel reservoirs or routes of transmission).
- However, the frequency of multiple outbreaks at an academic hospital over time and the value of routine molecular typing have not been analyzed.
- We examined epidemiologic features of healthcareassociated outbreak investigations with a focus on the usefulness of molecular analysis.

Methods

- Healthcare-associated outbreak investigations at an academic hospital during January 2012-December 2016 were retrospectively reviewed through institutional healthcare-associated infection (HAI) data.
- The data included comprehensive hospital-wide surveillance, monthly reports to the hospital infection control committee, and reports of pulsed-field gel electrophoresis (PFGE) analysis.
- Our outbreak investigations were triggered by an increase in number of infections or pathogens above baseline rate in a unit during a specified period of time.
- A healthcare-associated outbreak evaluated by molecular typing was defined as 1) cases overlapping in time and space and 2) identification of at least 2 isolates linked by PFGE.
- Contact tracing associated with exposure investigations of a single patient (e.g., varicella, tuberculosis) were excluded from analysis.

Emily E. Sickbert-Bennett^{1,2} PhD; MS; William A. Rutala^{1,2} PhD, MPH

Table 1. Epidemiological character	<u>istics of hea</u>	althcare-	<u>associated</u>	<u>d outbre</u>	aks at an ac	ademic hos	pital, 2012-2016.
	Overall (N=51)		ICUs (N=26)		Non-ICUs (N=25)		ICUs vs Non-ICUs
	No.	%	No.	%	No.	%	p-value
Duration							
>2 months	21	41	19	73	2	8	<0.0001
Pathogen							
MDRO	22	43	20	77	2	8	<0.0001
C. difficile	7	14	0	0	7	28	0.0042
Norovirus	7	14	0	0	7	28	0.0042
Repeated pathogen at same location	32	63	23	88	9	36	0.0001
Infection type							
Any HAI	47	92	23	88	24	96	
Pneumonia	9	18	8	31	1	4	0.0238
Lower respiratory tract infection	6	12	6	23	0	0	0.0226
Bloodstream infection	8	16	7	27	1	4	0.0496
Urinary tract infection	3	6	2	8	1	4	
Surgical site infection	3	6	2	8	1	4	
Gastroenteritis	18	35	1	4	17	68	<0.0001
Skin and soft tissue infection	8	16	7	27	1	4	0.0496
Population							
>4 patients involved in an outbreak	29	57	16	62	13	52	
>2 staff involved in an outbreak	9	18	1	4	8	32	0.0109
Genotyping							
PFGE performed	16	31	14	54	2	8	0.0006
Control measure							
Isolation/cohorting	37	73	18	69	19	76	
Enhanced hand hygiene	20	39	12	46	8	32	
Enhanced cleaning/disinfection	29	57	11	42	18	72	0.0483
Modification of care/equipment	21	41	13	50	8	32	
Patient screening/surveillance	14	27	13	50	1	4	0.0003
Closure of affected location	7	14	0	0	7	28	0.0042
Restriction of work	7	14	0	0	7	28	0.0042

associated outbreaks in ICUs (N=26)

Figure 3. Frequency of pathogens involved in healthcareassociated outbreaks in non-ICUs (N=25)

- outbreaks were identified (Fig. 1, Table 1).

- pathogens.
- common source.

Results

• Fifty-one healthcare-associated outbreaks (annual range 8-15), including 26 (51%) outbreaks in ICUs and 25 (49%) outbreaks in non-ICUs, and 263 infected/colonized patients (median 4, range 1-20) involved in these

• The frequency of pathogens varied greatly by affected location, specifically multidrug-resistant organisms (MDROs) in ICUs and gastroenteritis in non-ICUs (*Clostridium difficile*, norovirus, adenovirus) (Fig. 2, 3). Outbreaks in ICUs significantly tended to reoccur more commonly than those in non-ICUs (P=0.0001, Table 1). • All outbreaks were limited to approximately one-third of all units with some repeated instances of same

• Of 16 outbreaks due to a bacterial pathogen (total 99 bacteria isolates, median 4.5, range 2-20) evaluated by PFGE, 12 (75%) included some indistinguishable strains, suggesting person-to-person transmission or a

• PFGE were more frequently performed in ICU outbreaks than in non-ICU outbreaks (P=0.0006).

• A majority of outbreaks were terminated rapidly by enhanced control measures.

• Seven (14%) outbreak investigations (four caused by norovirus) led to closure of the affected location.

Hajime Kanamori, MD, PhD, MPH **Assistant Professor, Department of Infection Control and Laboratory Diagnostics, Tohoku University Graduate School of Medicine Adjunct Assistant Professor, Division of Infectious Diseases, UNC School of Medicine** Email: kanamori@med.unc.edu Conclusions

> • We characterized epidemiologically multiple outbreaks over time at a single academic hospital.

This study demonstrated significant differences in epidemiologic characteristics of multiple healthcare-associated outbreaks between ICUs and non-ICUs.

Our analysis provided insight into the usefulness of routine molecular analysis in assessing the transmission of MDROs and understanding the epidemiology of outbreaks.

• Our findings are important to implement appropriate infection prevention against healthcareassociated outbreaks and avoid repeated cases.

