# Preventing Surgical Site Infections

Deverick J. Anderson, MD, MPH Associate Professor of Medicine





#### Disclosures

- Research funding from the AHRQ, NIH/NIAID, and CDC
- Royalties from UpToDate, Online





#### Outline

- Impact of SSI
- Surveillance for SSIs
- Strategies for Prevention
  - Compendium recommendations
  - Special strategies
- Implementation
- Rates and reporting





### Impact of SSI

- SSIs are the most common and most costly HAI
- An estimated 16 million operations were performed in acute care hospitals in 2010
- Prevalence
  - 2-5% of surgical patients develop an SSI
  - ~160,000-300,000 SSIs per year in US
  - SSI is now the most common and costly HAI

#### Impact

- Each SSI results in 7-11 additional hospital days
- Patients with SSI have a 2-11 times higher risk of death
- 77% of deaths among patients with SSI are directly due to SSI
- Cost (2007 dollars): \$3.5 to \$10 billion annually





#### Surveillance

- Direct vs. indirect methods
  - Indirect method reliable (sensitivity, 84%-89%) and specific (specificity, 99.8%) compared with direct surveillance
- Indirect combines
  - Review of microbiology reports and patient medical records
  - Screening for readmission and/or return to the operating room
  - Other information, such as coded diagnoses, coded procedures, operative reports, or antimicrobials ordered
  - Surgeon and/or patient surveys





### Surveillance - Electronic Data Helps

- Strategy 1 antibiotics and readmissions
  - Improve the sensitivity and reduce effort
- Strategy 2 diagnosis codes
  - Medicare claims data can be used to enhance traditional surveillance methods for SSI and to identify hospitals with unusually high or low rates of SSI





### Surveillance - Post-Discharge

Important for internal review

Not useful for hospital comparisons





### Rates and Reporting

- Rate
  - Number of infections/100 procedures
- SIR Standardized Infection Ratio
  - Number of observed infections/number of expected infections
    - >1 is bad
- Methods for risk adjustment exist, but are not very good





### Example

- SSI following colon=10
  - Number of procedures=250
- NHSN says rate of colon SSI=2.0
  - So expected number of SSIs for 250 procedures would be 5 (5/250=2 SSI/100 procedures)
- SIR = 10/5 = 2







PURPOSE



Previously published guidelines are available that provide com-

prehensive recommendations for detecting and preventing

healthcare-associated infections (HAIs). The intent of this doc-

ument is to highlight practical recommendations in a concise

format designed to assist acute care hospitals in implementing

ument is to highlight practical recommendations in a concise

healthcare-associated infections (HAIs). The intent of this doc-

prehensive recommendations for detecting and preventing

Previously published guidelines are available that provide com-



C. Each SSI is associated with approximately 7-11 addipatients,12

tional postoperative hospital-days. 25,713,14

D. Patients with an SSI have a 2-11-times higher risk of

tional postoperative hospital-days. 3,9,13,14 D. Patients with an SSI have a 2-11-times higher risk of

C. Each SSI is associated with approximately 7-11 addi-

patients.12

B. SSIs account for 20% of all HAIs in hospitalized

ventable by using evidence-based guidelines. 10,11

Lisa L. Maragakis, MD, MPH;10 Keith S. Kaye, MD, MPH11

Deverick J. Anderson, MD, MPH;1 Kelly Podgorny, DNP, MS, RN;2 Sandra I. Berríos-Torres, MD;3 Dale W. Bratzler, DO, MPH; E. Patchen Dellinger, MD; Linda Greene, RN, MPS, CIC; Ann-Christine Nyquist, MD, MSPH; Lisa Saiman, MD, MPH; Deborah S. Yokoe, MD, MPH;

#### Strategies to Prevent Surgical Site Infections in Acute Care Hospitals: 2014 Update

#### SHEA/IDSA PRACTICE RECOMMENDATION

INFECTION CONTROL AND HOSPITAL EPIDEMIOLOGY JUNE 2014, VOL. 35, NO. 6

#### Most Recent Update

- Compendium documents originally published in 2008
- Reconvened and diversified writing group to update (inclusion of surgeons!)
- 6 sections
  - Rationale
  - Strategies
  - Performance measures Implementation
- Detection
- Recommendations





#### What's New?

- Modification of grading of evidence
- Expansion of recommendations
  - 15 Basic Practices
  - 5 Special Approaches
  - 4 Don't Dos
  - 4 Unresolved Issues
- Addition of the section on implementation





#### Other Recent Guidelines

• WHO - 2016

• ACS - 2016

Minor differences



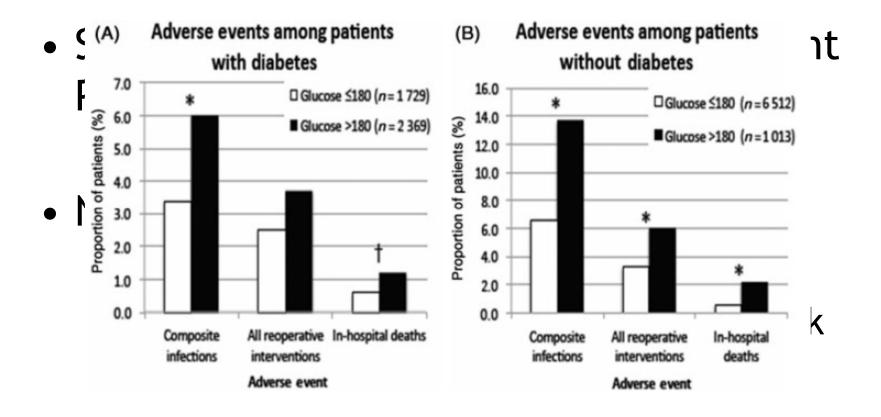


#### **Basic Practices - SCIP**

- Dose
- Timing
- Discontinuation
- No shaving
- Post-op glucose control
  - 180 mg/dL
  - Cardiac and non-cardiac
  - 18-24 hours after end of anesthesia
- Normothermia






### Post-op Glycemic Control

- Surgical Care and Outcomes Assessment Program in Washington State
  - 11,633 patients (57% colorectal)
- Notes
  - 25% had glucose>180
  - Hyperglycemia = 2-fold increase in SSI risk
    - Adjusted





### Post-op Glycemic Control





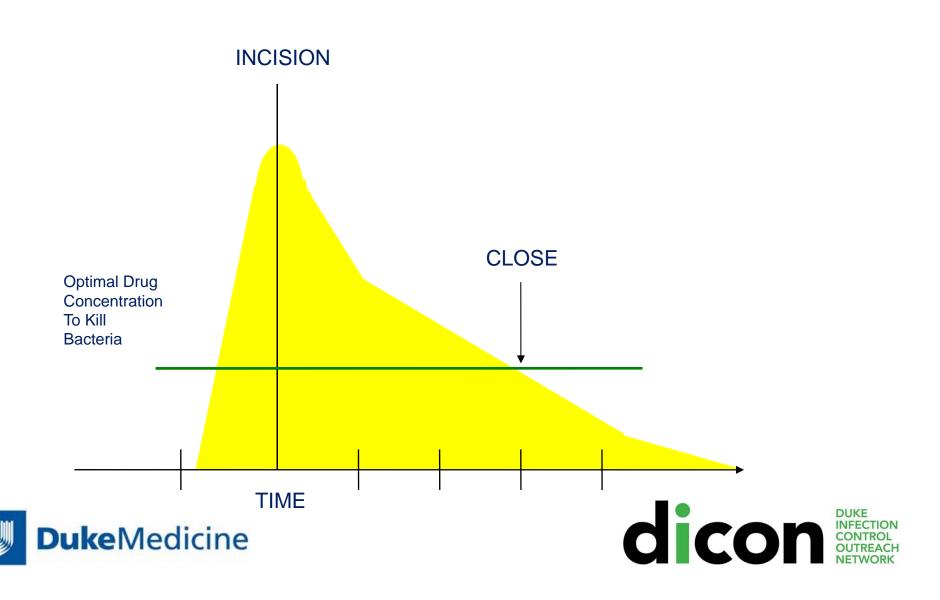


#### How?

- RCT of basal-bolus insulin vs. SS insulin
  - 211 general surgery patients with diabetes
- Results
  - 3.4-fold decrease in composite outcome
    - SSI, pneumonia, BSI, resp/renal failure
  - Average post-op glucose 145 v. 172 (p<0.01)
  - No statistically significant difference in patients with BG<40, but close (4 v. 0, p=0.06)






#### Basic Practices - Build on SCIP

- Weight-based dosing
- Redosing of prophylactic antibiotics for prolonged procedures
- Bowel prep





### Prophylaxis: Ideal Scenario




### Obesity and Surgical Duration

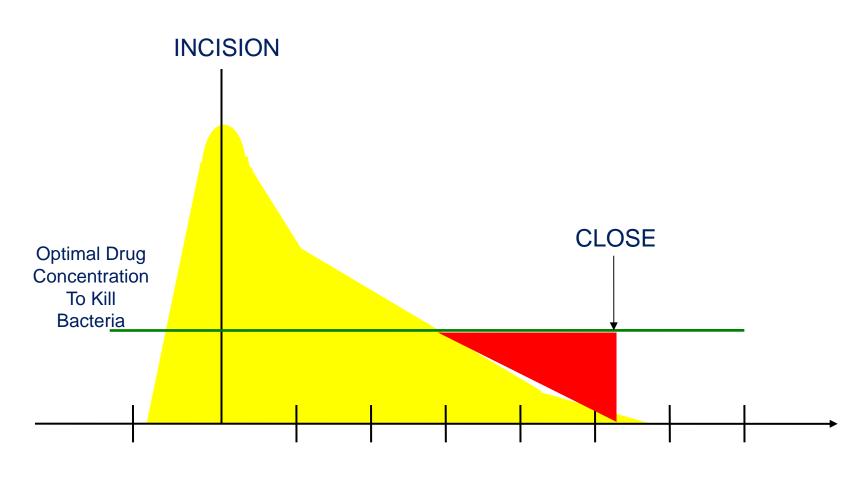
- Both significantly impact antibiotic levels in tissue
- Obesity is a risk factor for SSI
- Prolonged surgical duration is risk factor for SSI





# Prophylaxis: Obesity




### Impact of Increasing Dose

- Trial comparing 1g cefazolin v. 2g cefazolin among obese patients undergoing bariatric surgery
- Baseline rates of infection
  - 16.5/100 in obese
  - 2.5/100 in non-obese (undergoing other clean-contaminated surgery)
- Tissue and serum concentrations were lower in patients who received 1g (p<0.0001)</li>
- Rate decreased to 5.6/100 procedures in obese patients





### Prophylaxis: Long Procedure







### Re-Dosing: Data Show it Works

- Review of published literature
- Analysis of 801 patients undergoing cleancontaminated operations:
  - 1g cefazolin
  - 1g cefazolin + 1g 3 hours later
- If procedure > 3 hours, then rate of SSI reduced from 6.1 to 1.3





### MBP (no PO abx) and SSI


| tudy name         | Events / Total |           | Statistics for each study |                |                |         |      | Odds ratio and 95% CI |               |               |     |                  |
|-------------------|----------------|-----------|---------------------------|----------------|----------------|---------|------|-----------------------|---------------|---------------|-----|------------------|
|                   | MBP            | NO<br>MBP | Odds<br>ratio             | Lower<br>limit | Upper<br>limit | p-Value |      |                       |               |               |     | Relativ<br>weigh |
| Prownson 1992     | 21 / 86        | 10 / 93   | 2,682                     | 1,181          | 6,089          | 0,018   | - 1  | - 1                   | 1-            | <b>—</b> I    | 1   | 7.               |
| Burke 1994        | 7 / 82         | 7 / 87    | 1,067                     | 0,357          | 3,185          | 0,908   | - 1  | - 1 -                 | $\rightarrow$ | -             |     | 5,               |
| Santos 1994       | 24/72          | 13 / 77   | 2,462                     | 1,138          | 5,326          | 0,022   | - 1  |                       | <b></b>       | <b>—</b> I    |     | 7,               |
| (ale1997          | 8/62           | 1/20      | 2,815                     | 0,330          | 24,010         | 0,344   |      | -                     | -             |               |     | 1,               |
| fiettinen 2000    | 13 / 138       | 10 / 129  | 1,238                     | 0,523          | 2,930          | 0,628   | - 1  |                       | <del></del>   | .             |     | 6,               |
| illmann 2001      | 3/30           | 3/30      | 1,000                     | 0,185          | 5,403          | 1,000   | - 1  | I —                   | $\rightarrow$ | _             |     | 2,               |
| oung-Tabusso 2002 | 3/24           | 0/23      | 7,651                     | 0,373          | 156,840        | 0,187   | - 1  | - 1                   | -             |               | →   | 0                |
| mora 2003         | 19 / 187       | 17 / 193  | 1,171                     | 0,589          | 2,329          | 0,653   |      |                       | <del></del>   |               |     | 8                |
| a-Si-Oen 2005     | 16 / 125       | 13 / 125  | 1,265                     | 0,581          | 2,753          | 0,554   | - 1  |                       | <b></b> -     | .             |     | 7.               |
| am 2005           | 18 / 164       | 12 / 165  | 1,572                     | 0,732          | 3,377          | 0,246   | - 1  |                       | +-            | -             |     | 7.               |
| Sucher 2005       | 17 / 78        | 6/75      | 3,205                     | 1,188          | 8,646          | 0,021   | - 1  |                       | I—            |               |     | 5,               |
| ena 2007          | 19 / 48        | 11 / 49   | 2,263                     | 0,933          | 5,489          | 0,071   | - 1  |                       | <b>⊢</b>      | _             |     | 6.               |
| ung 2007          | 82 / 686       | 83 / 657  | 0,939                     | 0,678          | 1,301          | 0,704   | - 1  |                       | +             |               |     | 14,              |
| ontant 2007       | 135 / 670      | 165 / 684 | 0,794                     | 0.614          | 1,027          | 0,079   | - 1  |                       | -             |               |     | 15,              |
|                   |                |           | 1,403                     | 1,054          | 1,869          | 0,020   | - 1  |                       | -             |               |     | , ,              |
|                   |                |           | .,                        | .,             | 1,000          | -,      | 0,01 | 0,1                   | 1             | 10            | 100 |                  |
|                   |                |           |                           |                |                |         | 0,01 | 0,1                   | 1             | 10            | 100 |                  |
|                   |                |           |                           |                |                |         |      | Favors MBP            |               | Favors NO MBP |     |                  |





#### MBP and Harm? Anastamotic Leak

| Study name       | Events   | / Total   | Statist       | ics for ea     | ch study       |               | Odds ratio and 95% CI |          |           |     |                    |  |
|------------------|----------|-----------|---------------|----------------|----------------|---------------|-----------------------|----------|-----------|-----|--------------------|--|
|                  | MBP      | NO<br>MBP | Odds<br>ratio | Lower<br>limit | Upper<br>limit |               |                       |          |           |     | Relative<br>weight |  |
| Brownson 1992    | 8/67     | 1 / 67    | 8,949         | 1,087          | 73,690         | 1             | 1                     | <u> </u> | -         | 1   | 2,17               |  |
| Burke 1994       | 3/82     | 4/87      | 0,788         | 0,171          | 3,633          |               | - 1                   | _        | -e: I     |     | 4,12               |  |
| Santos 1994      | 7/72     | 4/77      | 1,965         | 0,550          | 7,020          |               |                       | 133      |           |     | 5,94               |  |
| Kale1998         | 1/62     | 0/20      | 1,000         | 0,039          | 25,519         |               | 34114                 | _        |           | 8 3 | 0,92               |  |
| Miettinen 2000   | 5 / 138  | 3 / 129   | 1,579         | 0,370          | 6,744          |               |                       |          |           |     | 4,57               |  |
| Fillmann 2001    | 2/30     | 1/30      | 2,071         | 0,178          | 24,148         |               | -                     |          | _         |     | 1,60               |  |
| Young-Tabusso 20 | 0023/24  | 0/23      | 7,651         | 0,373          | 156,840        |               |                       |          |           |     | 1,06               |  |
| Zmora 2003       | 7 / 187  | 4 / 193   | 1,838         | 0,529          | 6,384          |               |                       |          |           |     | 6,21               |  |
| Fa-Si-Oen 2005   | 7 / 125  | 6 / 125   | 1,177         | 0,384          | 3,605          |               |                       |          | - 0       |     | 7,68               |  |
| Ram 2005         | 1 / 164  | 2 / 165   | 0,500         | 0,045          | 5,568          |               | F1 - 1                |          |           | - 1 | 1,66               |  |
| Bucher 2005      | 5/78     | 1 / 75    | 5,068         | 0,578          | 44,446         |               |                       |          |           |     | 2,04               |  |
| Pena 2007        | 4 / 48   | 2/49      | 2,136         | 0,373          | 12,251         |               |                       |          | -         |     | 3,16               |  |
| Jung 2007        | 13 / 686 | 17 / 657  | 0,727         | 0,350          | 1,509          |               |                       |          |           |     | 18,06              |  |
| Contant 2007     | 32 / 670 | 37 / 684  | 0,877         | 0,540          | 1,425          |               |                       | -        |           |     | 40,83              |  |
|                  |          |           | 1,124         | 0,824          | 1,532          |               |                       | +        |           | 4   |                    |  |
|                  |          |           |               |                |                | 0,01          | 0,1                   | 1        | 10        | 100 |                    |  |
|                  |          |           |               |                |                | Association ( | Favors MB             | P Fa     | vors NO M | IBP |                    |  |







#### Oral + IV Antibiotics?

- Reviewed 182 RCTs comparing different prophylactic regimens
  - Elective and emergency procedures included
- 13 trials met criteria to compare combined oral and intravenous antibiotic vs. IV alone





#### Oral + IV Antibiotics?

Analysis 6.1. Comparison 6 Combined oral and intravenous versus oral or intravenous alone, Outcome I Surgical wound infection: oral + iv versus iv alone.

Review: Antimicrobial prophylaxis for colorectal surgery

Compartsors 6 Combined oral and intravenous versus oral or intravenous alone

Outcome: I Surgical wound infections oral + iv versus iv alone

Rev

VS.

Study or subgroup Combined Oral % IV IV Alone Risk Ratio Walght Risk Ratio n/N M-H.Random,95% CI M-H,Random,95% CI n/N Coppa 1988 9/169 15/141 10.5 % 0.50 [ 0.23, I.11 ] Espin-Basany 2005 15/200 6/100 85% 1.25 [ 0.50, 3.12 ] 0.46 [ 0.21, 1.01 ] Ishida 2001 8/72 17/7 11.0 % Kalser 1983 2/63 7/56 35% 0.25 [ 0.06, IL17 ] 0.31 [0.12, 0.78] Khubchandani 1989 14/47

3/65 5/67 4.1% 0.62 [ 0.15, 2.48 ] com Lazorthes 1982 1/30 7/30 2.0 % 0.14 [ 0.02, 1.09 ] Lewts 2002 5/104 17/104 7.8 % 0.29 [ 0.11, 0.77 ] McArdle 1995 8/62 20/87 11.4% 0.56 [ 0.26, 1.19 ]

9.45 [ 0.53, 169.95 ] Peruzzo 1987 4/39 Reynolds 1989 9/107 26/223 12.1 % 0.72 [ 0.35, 1.49 ] Stellato 1990 3/51 2/51 2.7% 1.50 [ 0.26, 8.60 ]

Taylor 1994 0.60 [ 0.34, 1.04 ] 17/159 30/168 17.2 % Total (95% CI) 1176 1186 100.0 % 0.55 [ 0.41, 0.74 ]

Total events: 89 (Combined Oral % IV), 166 (IV Alone) Heterogeneity:  $Tau^2 = 0.05$ ;  $Chi^2 = 14.78$ , df = 12 (P = 0.25);  $I^2 = 19\%$ 

Test for overall effect; Z = 3.93 (P = 0.000084)

Favours treatment Favours control Nelson et al. Cochrane Database Syst Rev 2009; 21:CD001181

01 02 05 1 2 5 10







ent

luded

### Basic Practices - Beyond SCIP

- Oxygenation
- Skin prep
- Use of plastic wound protectors
- WHO checklist





### Oxygen and SSI: Basic Science

- O<sub>2</sub> is important for wound healing
- O<sub>2</sub> correlated with collagen deposition
- Tissue hypoxia is a risk factor for wound infection and dehiscence
- Superoxide production by leukocytes proportional to Po2
- Many antibiotics require oxygen to exert lethal effects on bacteria



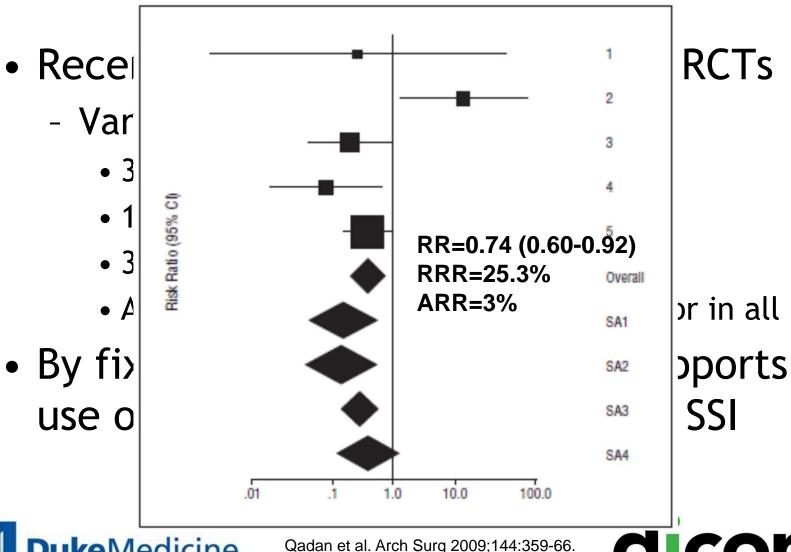


### High Inspired O<sub>2</sub> Fraction

- Several studies have compared FiO<sub>2</sub> of 80% vs. 30%
- 5 RCTs
  - Mayzler (2005; Minerva Anesthesiol)
    - n=38; colorectal procedure for metastatic dz;
  - Pryor (2004; JAMA)
    - n=160; major abd surgery; SSI rate 2-fold higher in intervention group; high rates of obesity; SSI in 14d
  - Belda (2005; JAMA)
    - n=291; elective colorectal; O<sub>2</sub> for 6 hours; SSI in 14d
  - Greif (2000; NEJM)
    - n=500; elective colorectal; SSI in 15d
  - Myles (2007; Anesthesiology)
    - n=2002; non-CT surgery; SSI in 30d






# High Inspired O<sub>2</sub> Fraction

- Recent meta-analysis reviewed 5 RCTs
  - Variation in methods noted
    - 3 included nitrous oxide mixture
    - 1 provided O2 for 6 hours
    - 3 colorectal
    - Antibiotic prophylaxis not controlled for in all
- By fixed-effects method, data supports use of 80% FiO2 for prevention of SSI





# High Inspired O<sub>2</sub> Fraction







#### Harm?

- PROXI Trial
  - n=1400 patients undergoing acute or elective laparotomy
  - Randomized to 80% v. 30% FiO<sub>2</sub>
  - SSI dx in 14 days
- No difference in rates of SSI for two groups
  - Approx 20% for each group
  - Adjusted RR=0.91 (0.69 to 1.20)
- No difference in adverse outcomes between two groups





#### Harm?

PROXI Trial recently published

n-1400 nationts undergoing acute or elective

| MET MULL BATTABLE TIBARKANI                                   | AA AEIITA AE AIA        | · · · · · · · · · · · · · · · · · · · |
|---------------------------------------------------------------|-------------------------|---------------------------------------|
| Characteristic                                                | 80% Oxygen<br>(n = 685) | 30% Oxygen<br>(n = 701)               |
| Surgical procedure, No. (%) Colorectal procedures             | 303 (44.2)              | 330 (47.1)                            |
| Gynecological procedures                                      | 139 (20.3)              | 129 (18.4)                            |
| Small-bowel surgery                                           | 78 (11.4)               | 80 (11.4)                             |
| Appendectomy                                                  | 61 (8.9)                | 63 (9.0)                              |
| Other <sup>b</sup>                                            | 104 (15.2)              | 99 (14.1)                             |
| Receiving adequate antibiotic prophylaxis, No. (%)            | 580 (84.7)              | 589 (84.0)                            |
| Receiving timely antibiotic prophylaxis, No. (%) <sup>e</sup> | 432 (66.8)              | 448 (68.1)                            |
|                                                               | -                       | 4                                     |

 No difference in adverse outcomes between two groups





80%

30%

| • PROXI Tria                                      | Adverse Event Any Wound-related                  | Oxygen<br>(n = 685)<br>361 (52.7)<br>61 (8.9) | Oxygen<br>(n = 701)<br>369 (52.6)<br>77 (11.0) | aloctivo                                |
|---------------------------------------------------|--------------------------------------------------|-----------------------------------------------|------------------------------------------------|-----------------------------------------|
| Charac                                            |                                                  | 23 (3.4)                                      | 34 (4.9)                                       | 30% Oxygen<br>(n = 701)                 |
| Surgical procedure, No. (%) Colorectal procedures | Postoperative nausea                             | 79 (11.5)<br>136 (19.9)                       | 83 (11.8)<br>135 (19.3)                        | 330 (47.1)                              |
| Gynecological procedur Small-bowel surgery        | Respiratory                                      | 63 (9.2)<br>57 (8.3)                          | 57 (8.1)<br>67 (9.6)                           | 129 (18.4)<br>80 (11.4)                 |
| Appendectomy<br>Other <sup>b</sup>                | Gastrointestinal tract Other                     | 61 (8.9)<br>150 (21.9)                        | 62 (8.8)<br>152 (21.7) H                       | 63 (9.0)<br>99 (14.1)                   |
| Receiving adequate antibio                        | -Any serious adverse event                       | 165 (24.1)<br>21 (3.1)                        | 154 (22.0) H                                   | 589 (84.0)<br>448 (68.1)                |
| <ul> <li>No differer</li> </ul>                   | Other infection                                  | 29 (4.2)                                      | 34 (4.9)                                       | between                                 |
| two groups                                        | Respiratory Circulatory                          | 27 (3.9)<br>24 (3.5)                          | 25 (3.6)                                       |                                         |
| <b>Duke</b> Medicir                               | Other  Ivieynori et al. JANIA Hunt and Hopf. JAN |                                               |                                                | DUKE INFECTION CONTROL OUTREACH NETWORK |

## Skin Prep

- Use alcohol-containing skin prep (when possible)
- Add a disinfectant, but choice is unclear based on published data
- More to be said on this topic later...





#### CHG Uses in Infection Control

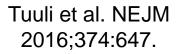
| Application                 | Evidence                                                                   |  |  |  |  |
|-----------------------------|----------------------------------------------------------------------------|--|--|--|--|
| Skin antisepsis             |                                                                            |  |  |  |  |
| CVC site preparation        | 50% better than povidone-iodine (catheter colonization)                    |  |  |  |  |
| Surgical hand scrub         | 86-92% reduction in flora                                                  |  |  |  |  |
| Source control in ICUs      | Reduction in skin flora; reduce risk of CLABSI 6-fold                      |  |  |  |  |
| Preoperative scrub          | Superior to other antiseptics in reducing skin flora at surgical site      |  |  |  |  |
| Impregnated devices         |                                                                            |  |  |  |  |
| Vascular catheter dressings | Reduction in catheter colonization (40-50%); decrease rate of CLABSI       |  |  |  |  |
| Vascular catheters          | Reduction in catheter colonization (55%); in BSI (40%) in high-risk groups |  |  |  |  |





#### CHG v. PI?

- Finally, RCT comparing CHG-ETOH vs. PI-ETOH
- 1,147 women undergoing CSEC
- Rate of SSI lower with CHG/EtOH (p=0.02)
  - CHG/EtOH SSI rate=3.0
  - PI/EtOH SSI rate=4.9






#### CUC V DI2

| Subgroup               | Chlorhexidine–<br>Alcohol | Iodine–<br>Alcohol | Relative Risk (95% CI)                             | P Value fo<br>Interaction |  |  |  |
|------------------------|---------------------------|--------------------|----------------------------------------------------|---------------------------|--|--|--|
|                        | no. of events/            | total no.          | , ,                                                |                           |  |  |  |
| Type of cesarean deliv | ery                       |                    |                                                    | 0.22                      |  |  |  |
| Scheduled              | 8/334                     | 21/335             | 0.38 (0.17–0                                       | ).85)                     |  |  |  |
| Unscheduled            | 15/238                    | 21/240             | 0.72 (0.38–1                                       | 1.36)                     |  |  |  |
| Obese                  |                           |                    | i<br>1                                             | 0.70                      |  |  |  |
| Yes                    | 18/402                    | 30/387             | 0.58 (0.33–1                                       | 1.02)                     |  |  |  |
| No                     | 5/170                     | 12/188             | 0.46 (0.17–1                                       | 28)                       |  |  |  |
| Skin-closure type      |                           |                    |                                                    | 0.12                      |  |  |  |
| Staples                | 9/108                     | 9/107              | 0.99 (0.41–2                                       | 2.40)                     |  |  |  |
| Suture                 | 14/464                    | 33/467             | 0.43 (0.23–0                                       | ).79)                     |  |  |  |
| Chronic medical cond   | ition                     |                    | 1                                                  | 0.59                      |  |  |  |
| Yes                    | 5/107                     | 11/101             | 0.43 (0.15–1                                       | 1.19)                     |  |  |  |
| No                     | 18/465                    | 31/474             | 0.59 (0.34–1                                       | 1.04)                     |  |  |  |
| Diabetes               |                           |                    |                                                    | 0.84                      |  |  |  |
| Yes                    | 2/55                      | 5/65               | 0.47 (0.10–2                                       | 2.34)                     |  |  |  |
| No                     | 21/517                    | 37/510             | 0.56 (0.33–0                                       | ).94)                     |  |  |  |
|                        |                           |                    | 0.2 1.0 5.0                                        |                           |  |  |  |
|                        |                           |                    | Chlorhexidine-Alcohol Iodine-Alcohol Better Better |                           |  |  |  |







## FDA Warning: CHG

- FDA released a Safety Communication warning about potential for rare but serious allergic reactions to CHG
- Data
  - 1969-2015: 52 cases of anaphylaxis (2 deaths)
  - Big increase since 2010
- While need to monitor for these important reactions, this issue does not change recommendations about CHG

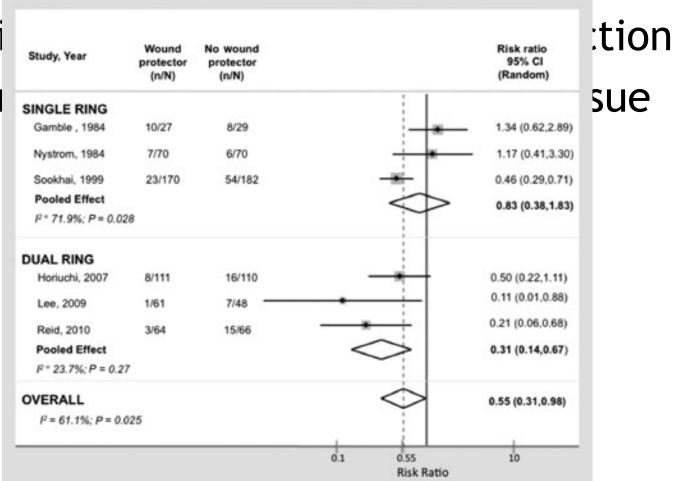




#### Impervious Plastic Wound Protectors

- Plastic sheath that facilitates retraction
- Theoretically improves health of tissue
- GI and biliary tract procedures






#### Impervious Plastic Wound Protectors

Plasti

Theol

• GI an





Edwards et al. Ann Surg 2012; 256:53-59.







- Checklists
  - Proven method for prevention of complications
    - Change system AND individual behavior
  - CLABSI
- New checklist for surgical care
  - 19 item surgical safety checklist
    - Sign in, Time out, Sign out
  - 8 institutions throughout world
  - Prospective, quasi-experimental study of patients before (n=3733) and after (n=3955) implementation
  - Non-cardiac surgery
  - During "Time-Out," OR team had to confirm that prophylactic antibiotics have been administered ≤60 min before incision is made or that antibiotics are not indicated





| Table 2. Characteristics of Participating Hosp | itals. |
|------------------------------------------------|--------|
|------------------------------------------------|--------|

| Site                                     | Location              | No. of<br>Beds | No. of<br>Operating Rooms | Туре            |
|------------------------------------------|-----------------------|----------------|---------------------------|-----------------|
| Prince Hamzah Hospital                   | Amman, Jordan         | 500            | 13                        | Public, urban   |
| St. Stephen's Hospital                   | New Delhi, India      | 733            | 15                        | Charity, urban  |
| University of Washington Medical Center  | Seattle, Washington   | 410            | 24                        | Public, urban   |
| St. Francis Designated District Hospital | Ifakara, Tanzania     | 371            | 3                         | District, rural |
| Philippine General Hospital              | Manila, Philippines   | 1800           | 39                        | Public, urban   |
| Toronto General Hospital                 | Toronto, Canada       | 744            | 19                        | Public, urban   |
| St. Mary's Hospital*                     | London, England       | 541            | 16                        | Public, urban   |
| Auckland City Hospital                   | Auckland, New Zealand | 710            | 31                        | Public, urban   |





| Site No. | No. of F |       |        | Prophylactic Antibiotics Given Surgical-Site Appropriately Infection (N=6802) |        | Dea   | ath    | Any Complication |        |       |
|----------|----------|-------|--------|-------------------------------------------------------------------------------|--------|-------|--------|------------------|--------|-------|
|          | Before   | After | Before | After                                                                         | Before | After | Before | After            | Before | After |
|          |          |       |        |                                                                               | perce  | nt    |        |                  |        |       |
| 1        | 524      | 598   | 4.0    | 2.0                                                                           | 98.1   | 96.9  | 1.0    | 0.0              | 11.6   | 7.0   |
| 2        | 357      | 351   | 2.0    | 1.7                                                                           | 56.9   | 76.9  | 1.1    | 0.3              | 7.8    | 6.3   |
| 3        | 497      | 486   | 5.8    | 4.3                                                                           | 83.8   | 87.7  | 0.8    | 1.4              | 13.5   | 9.7   |
| 4        | 520      | 545   | 3.1    | 2.6                                                                           | 80.0   | 81.8  | 1.0    | 0.6              | 7.5    | 5.5   |
| 5        | 370      | 330   | 20.5   | 3.6                                                                           | 29.8   | 96.2  | 1.4    | 0.0              | 21.4   | 5.5   |
| 6        | 496      | 476   | 4.0    | 4.0                                                                           | 25.4   | 50.6  | 3.6    | 1.7              | 10.1   | 9.7   |
| 7        | 525      | 585   | 9.5    | 5.8                                                                           | 42.5   | 91.7  | 2.1    | 1.7              | 12.4   | 8.0   |
| 8        | 444      | 584   | 4.1    | 2.4                                                                           | 18.2   | 77.6  | 1.4    | 0.3              | 6.1    | 3.6   |
| Total    | 3733     | 3955  | 6.2    | 3.4                                                                           | 56.1   | 82.6  | 1.5    | 0.8              | 11.0   | 7.0   |
| P value  |          |       | <0.0   | 001                                                                           | <0.    | 001   | 0.0    | 03               | <0.    | 001   |





#### Other Interventions

- Maintain normothermia
- Surveillance
  - Use automated data
  - Feedback data to surgeons/surgical personnel
  - Provide education to surgeons and patients



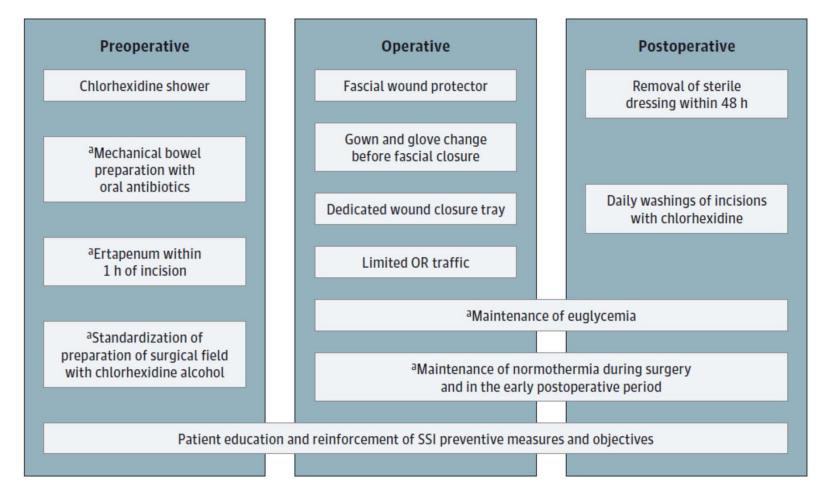


#### Special Strategies - To Do or Not?

- "Duke" colorectal bundle
  - Glove change for closure?
- Screening and decolonization for S. aureus
- Antimicrobial sutures






#### The Duke Colorectal Bundle

- High adverse outcomes following colorectal procedures (>20%)
  - ACS-NSQIP data
- Created and implemented a "bundle" of evidence-based and "common sense" interventions
  - Multidisciplinary
  - Monthly review meetings
  - Items included on a "checklist"





## **Bundle Components**





Keenan et al. JAMA Surg 2014;149:1045.



#### Results

- Retrospective analysis of 559 randomly selected patients from 2008 through 2012
  - Propensity matched on multiple potential confounders (age, sex, BMI, DM, chemo, XRT, total op time, lap approach, rectal)
  - 212 patients in each group
    - No major differences in patient characteristics





#### Results

|                            | Prebundle<br>(n=212) | Postbundle<br>(n=212) | p-value |
|----------------------------|----------------------|-----------------------|---------|
| Superficial-incisional SSI | 41 (19.3)            | 12 (5.7)              | <0.001  |
| Deep-incisional SSI        | 3 (1.4)              | 0                     | 0.25    |
| Organ-Space SSI            | 11 (5.2)             | 6 (2.8)               | 0.32    |
| Wound disruption           | 5 (2.4)              | 3 (1.4)               | 0.72    |
| Postop sepsis              | 18 (8.5)             | 5 (2.4)               | 0.009   |
| LOS - med (IQR)            | 5.5 (4-8)            | 5.0 (3-7)             | 0.05    |
| 30-d readmit               | 32 (15.1)            | 19 (9.0)              | 0.14    |





## Successes/Challenges

- Bundle considered a success
  - Increased adherence to evidence-based and systematic practices
  - Key "implementation" components:
    - Multidisciplinary
    - Monthly review, open discussion
- Limitations
  - Retrospective, quasi-experimental
  - Elective procedures only
  - Bundle component vs. all?
- Challenges
  - What components to include?
  - Scheduling
  - Prioritization
  - Must have a surgeon "champion"



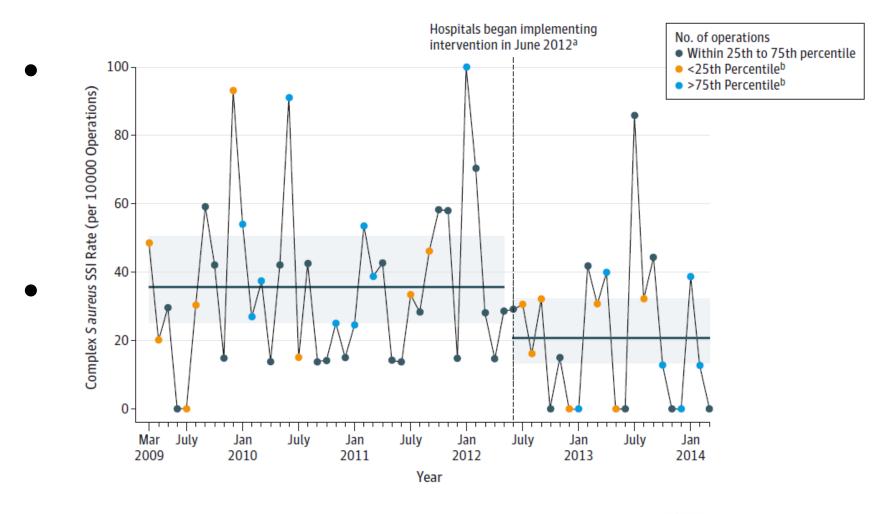


## Glove/Instrument Change

- ACS/SIS recommended changing gloves and instruments for closure in colorectal surgery
- Based on expert concensus
- Frankly, not a bad idea






#### SA Screening/Decolonization

- If known to be colonized, should decolonize
  - ASHP, WHO, ACS, SHEA
- BUT
  - Should you screen??
- Controversial!





## SA Screening/Decolonization





Schweizer et al. JAMA 2015;313:2162.



## SA Screening/Decolonization

- Many factors to consider
  - Baseline rate of *S. aureus* SSI
  - Adherence to basic practices
  - Ability to follow up protocol
  - Resources to implement protocol
  - How to screen? How to decolonize?
- Currently recommended as a "Special Approach"





#### **Antimicrobial Sutures**

- Important:
  - Foreign devices increase the risk of SSI
    - Presence of sutures decreases inoculum required for SSI
      - $-10^6$  to  $10^2$
- SHEA/IDSA guidelines not recommended
- WHO and ACS guidelines recommended for clean and clean-contaminated abdominal cases
  - Meta-analysis published in 2016 that included 6 additional RCTs





#### **Antimicrobial Sutures**

|                                         | Triclosan-coated Uncoat |            | ted    | Risk Ratio |        |                    | Risk Ratio |                                                             |  |
|-----------------------------------------|-------------------------|------------|--------|------------|--------|--------------------|------------|-------------------------------------------------------------|--|
| Study or Subgroup                       | Events                  | Total      | Events | Total      | Weight | M-H, Fixed, 95% CI | Year       | r M-H, Fixed, 95% CI                                        |  |
| Deliaert 2009                           | 0                       | 26         | 0      | 26         |        | Not estimable      | 2009       | 9                                                           |  |
| Rasic 2011                              | 4                       | 91         | 12     | 93         | 3.4%   | 0.34 [0.11, 1.02]  | 2011       | 1                                                           |  |
| Galal 2011                              | 17                      | 230        | 33     | 220        | 9.7%   | 0.49 [0.28, 0.86]  | 2011       | 1                                                           |  |
| Baracs 2011                             | 23                      | 188        | 24     | 197        | 6.8%   | 1.00 [0.59, 1.72]  | 2011       | 1 +                                                         |  |
| Williams 2011                           | 10                      | 75         | 14     | 75         | 4.0%   | 0.71 [0.34, 1.51]  | 2011       | 1 -+                                                        |  |
| Zhang 2011                              | 2                       | 51         | 5      | 50         | 1.5%   | 0.39 [0.08, 1.93]  | 2011       | 1 ———                                                       |  |
| Seim 2012                               | 16                      | 160        | 17     | 163        | 4.9%   | 0.96 [0.50, 1.83]  | 2012       | 2 +                                                         |  |
| Turtiainen 2012                         | 31                      | 139        | 30     | 137        | 8.7%   | 1.02 [0.65, 1.59]  | 2012       | 2 +                                                         |  |
| Isik 2012                               | 9                       | 170        | 19     | 340        | 3.7%   | 0.95 [0.44, 2.05]  | 2012       | 2 —                                                         |  |
| Thimour-Bergstrom 2013                  | 23                      | 184        | 38     | 190        | 10.8%  | 0.63 [0.39, 1.01]  | 2013       | 3                                                           |  |
| Nakamura 2013                           | 9                       | 206        | 19     | 204        | 5.5%   | 0.47 [0.22, 1.01]  | 2013       | 3 —                                                         |  |
| Justinger 2013                          | 31                      | 485        | 42     | 371        | 13.7%  | 0.56 [0.36, 0.88]  | 2013       | 3                                                           |  |
| Diener 2014                             | 87                      | 587        | 96     | 598        | 27.4%  | 0.92 [0.71, 1.21]  | 2014       | 4 -                                                         |  |
| Total (95% CI)                          |                         | 2592       |        | 2664       | 100.0% | 0.76 [0.65, 0.88]  |            | •                                                           |  |
| Total events                            | 262                     |            | 349    |            |        |                    |            | 200                                                         |  |
| Heterogeneity: Chi <sup>2</sup> = 14.57 | , df = 11 (P = 1        | 0.20);  2= | = 25%  |            |        |                    |            |                                                             |  |
| Test for overall effect; Z = 3.         |                         |            |        |            |        |                    | F          | 0.01 0.1 1 10 100 Favours triclosan-coated Favours uncoated |  |





#### Unresolved

- CHG baths before surgery
- Intranasal CHG
- Antibiotic-impregnated, implantable sponges
  - Gentamicin





# One Last Thought about Interventions

- SCIP SSI measures have been largely removed
- Cynical view
  - All the gain in best practices via SCIP will gradually degrade
- So...
  - Need to remain vigilant for increases in SSI during and after transition
  - Can SCIP measures still be tracked??





## Implementation

- Based on 4 Es
  - Engage
    - Clear communication about why important
      - Ex: physician champions
  - Educate
    - The "what to do/not do"
      - Ex: Education for patients/family
  - Execute
    - Reduce barriers and improve adherence
      - Ex: QI methodology (six sigma, etc.)
  - Evaluate
    - Measurement
      - Ex: Longitudinal evaluation of outcomes and process





## Role of IP in Implementation

#### Engage

- Involve hospital leadership
- Identify physician champions
- Identify multidisciplinary teams
- Evidence-based practices
- Foster a culture of safety

#### Educate

- Patients, surgeons, leadership





## Role of IP in Implementation

#### Execute

- Quality improvement strategies
- Maximize IT
- Participate in a network/collaborative
- Order sets
- Protocols
- Act on problems once identified!!

#### Evaluate

- Surveillance





#### Take Home Points

- SSI is the most common and most costly HAI
- Many different strategies are required to reduce SSI risk to lowest extent possible
- IPs play a critical role
- Not every hospital needs to approach SSI prevention the same way
  - But all hospitals need to at least use the basic strategies





## Questions?



