Preventing Surgical Site Infections

Deverick J. Anderson, MD, MPH Associate Professor of Medicine

Disclosures

- Research funding from the AHRQ, NIH/NIAID, and CDC
- Royalties from UpToDate, Online

Outline

- Impact of SSI
- Surveillance for SSIs
- Strategies for Prevention
 - Basic recommendations
 - Special strategies
- Implementation
- Rates and reporting

Impact of SSI

- SSIs are the most common and most costly HAI
- An estimated 16 million operations were performed in acute care hospitals in 2010
- Prevalence
 - 2-5% of surgical patients develop an SSI
 - ~160,000-300,000 SSIs per year in US
 - SSI is now the most common and costly HAI
- Impact
 - Each SSI results in 7-11 additional hospital days
 - Patients with SSI have a 2-11 times higher risk of death
 - 77% of deaths among patients with SSI are directly due to SSI
 - Cost (2007 dollars): \$3.5 to \$10 billion annually

www.cdc.gov/nhsn/pdfs Anderson D, et al ICHE 2014

Surveillance

- Direct vs. indirect methods
 - Indirect method reliable (sensitivity, 84%-89%) and specific (specificity, 99.8%) compared with direct surveillance
- Indirect combines
 - Review of microbiology reports and patient medical records
 - Screening for readmission and/or return to the operating room
 - Other information, such as coded diagnoses, coded procedures, operative reports, or antimicrobials ordered
 - Surgeon and/or patient surveys

Baker et al. AJIC 1995. Cardo et al. ICHE 1993.

Surveillance - Electronic Data Helps

- Strategy 1 antibiotics and readmissions
 - Improve the sensitivity and reduce effort
- Strategy 2 diagnosis codes
 - Medicare claims data can be used to enhance traditional surveillance methods for SSI and to identify hospitals with unusually high or low rates of SSI

Chalfine et al ICHE 2006. Calderwood et al. ICHE 2013. Huang et al. ICHE 2011.

Surveillance - Post-Discharge

- Important for internal review
- Not useful for hospital comparisons

Rates and Reporting

- Rate
 - Number of infections/100 procedures
- SIR Standardized Infection Ratio
 - Number of observed infections/number of expected infections
 - >1 is bad
- Methods for risk adjustment exist, but are not very good

Example

- SSI following colon=10
 - Number of procedures=250
- NHSN says rate of colon SSI=2.0
 - So expected number of SSIs for 250 procedures would be 5 (5/250=2 SSI/100 procedures)
- SIR = 10/5 = 2

INFECTION CONTROL AND HOSPITAL EPIDEMIOLOGY JUNE 2014, VOL. 35, NO. 6

SHEA/IDSA PRACTICE RECOMMENDATION

Strategies to Prevent Surgical Site Infections in Acute Care Hospitals: 2014 Update

Deverick J. Anderson, MD, MPH;1 Kelly Podgorny, DNP, MS, RN;2 Sandra I. Berríos-Torres, MD;3 Dale W. Bratzler, DO, MPH;4 E. Patchen Dellinger, MD;5 Linda Greene, RN, MPS, CIC;6 Ann-Christine Nyquist, MD, MSPH;7 Lisa Saiman, MD, MPH;8 Deborah S. Yokoe, MD, MPH;9 Lisa L. Maragakis, MD, MPH;10 Keith S. Kaye, MD, MPH11

PURPOSE

Previously published guidelines are available that provide comprehensive recommendations for detecting and preventing healthcare-associated infections (HAIs). The intent of this document is to highlight practical recommendations in a concise format designed to assist acute care pospitals in implementing ument is to highlight practical recommendations in a concise healthcare-associated infections (HAIs). The intent of this docprehensive recommendations for detecting and preventing Previously published guidelines are available that provide com-

ventable by using evidence-based guidelines.^{10,11}

- B. SSIs account for 20% of all HAIs in hospitalized patients.12
- C. Each SSI is associated with approximately 7-11 additional postoperative hospital-days.3,9,13,14
- D. Patients with an SSI have a 2-11-times higher risk of
- D. Patients with an SSI have a 2–11-times higher risk of tional postoperative hospital-days.250,13,14
- C. Each SSI is associated with approximately 7-11 addipatients.12

INFECTION

B. SSIs account for 20% of al HAIs in hospitalized DRKE ventable by using evid

Most Recent Update

- Compendium documents originally published in 2008
- Reconvened and diversified writing group to update (inclusion of surgeons!)
- 6 sections
 - Rationale
 - Detection

- Strategies

- Recommendations
- Performance measures Implementation

What's New?

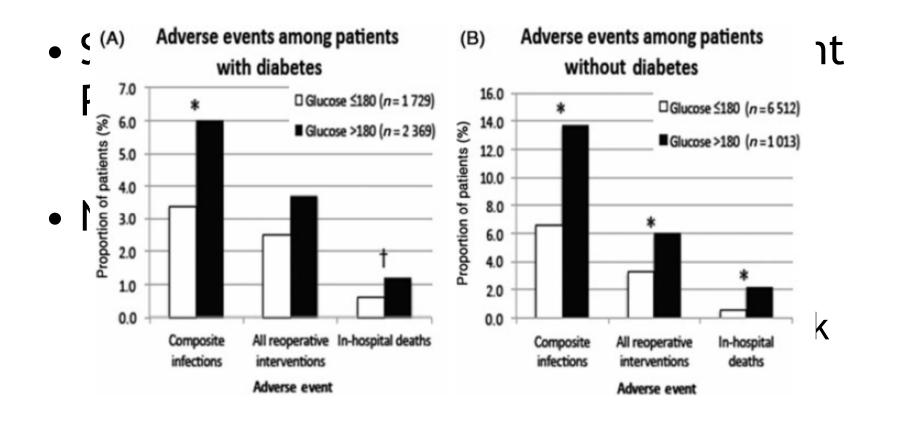
- Modification of grading of evidence
- Expansion of recommendations
 - 15 Basic Practices
 - 5 Special Approaches
 - 4 Don't Dos
 - 4 Unresolved Issues
- Addition of the section on implementation

Other Recent Guidelines

- WHO 2016
- ACS 2016
- CDC 2017
- Minor differences

Basic Practices - SCIP

- Dose
- Timing
- Discontinuation
- No shaving
- Post-op glucose control
 - 180 mg/dL
 - Cardiac and non-cardiac
 - 18-24 hours after end of anesthesia
- Normothermia


Post-op Glycemic Control

- Surgical Care and Outcomes Assessment Program in Washington State
 - 11,633 patients (57% colorectal)
- Notes
 - 25% had glucose>180
 - Hyperglycemia = 2-fold increase in SSI risk
 - Adjusted

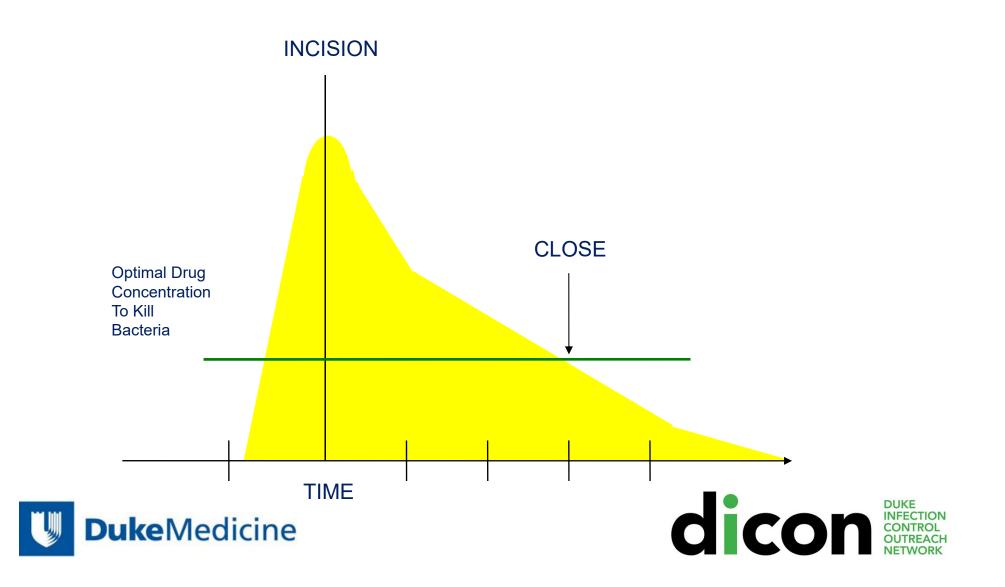
Post-op Glycemic Control

Kwon et al. Ann Surg 2013;257:8-14.

How?

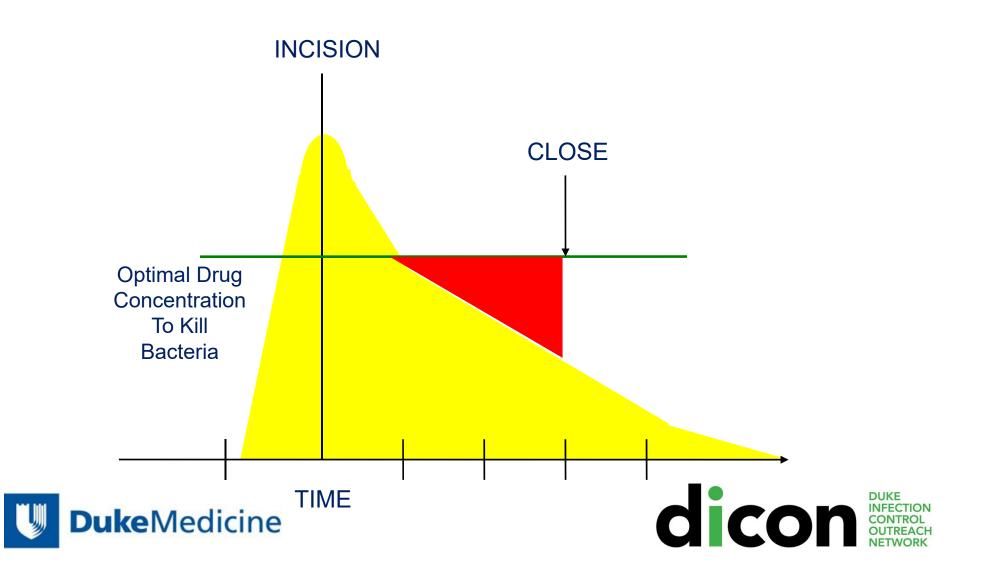
- RCT of basal-bolus insulin vs. SS insulin
 - 211 general surgery patients with diabetes
- Results
 - 3.4-fold decrease in composite outcome
 - SSI, pneumonia, BSI, resp/renal failure
 - Average post-op glucose 145 v. 172 (p<0.01)
 - No statistically significant difference in patients with BG<40, but close (4 v. 0, p=0.06)

Umpierrez et al. Diabetes Care 2011;34:256-61.


Basic Practices - Build on SCIP

- Weight-based dosing
- Redosing of prophylactic antibiotics for prolonged procedures
- Bowel prep

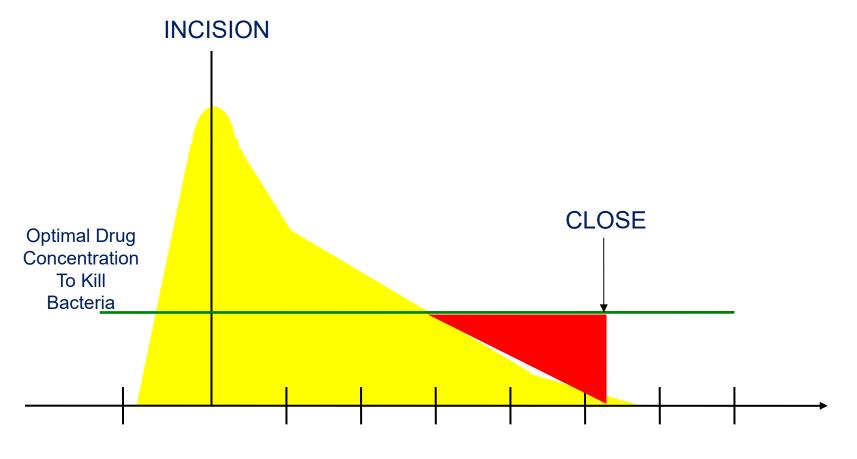
Prophylaxis: Ideal Scenario


Obesity and Surgical Duration

- Both significantly impact antibiotic levels in tissue
- Obesity is a risk factor for SSI
- Prolonged surgical duration is risk factor for SSI

Prophylaxis: Obesity

Impact of Increasing Dose

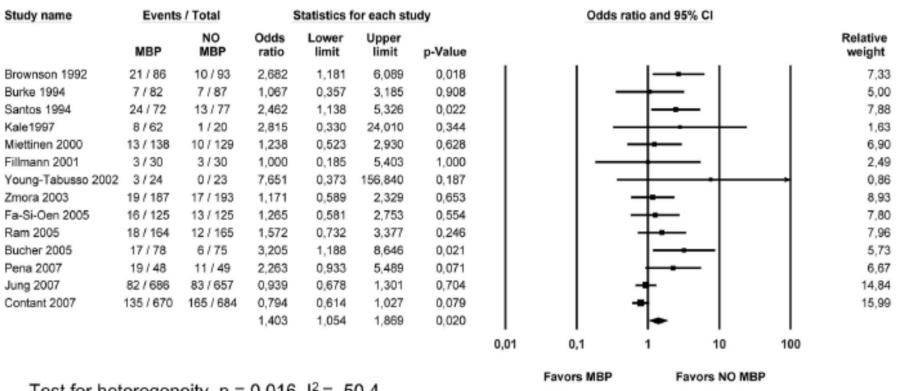

- Trial comparing 1g cefazolin v. 2g cefazolin among obese patients undergoing bariatric surgery
- Baseline rates of infection
 - 16.5/100 in obese
 - 2.5/100 in non-obese (undergoing other cleancontaminated surgery)
- Tissue and serum concentrations were lower in patients who received 1g (p<0.0001)
- Rate decreased to 5.6/100 procedures in obese patients

Forse et al. Surgery 1989;106:750-6.

Prophylaxis: Long Procedure

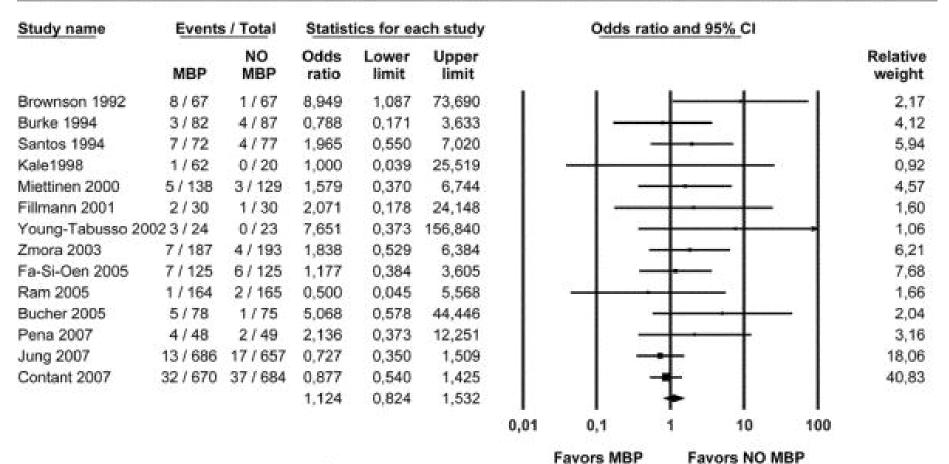
Re-Dosing: Data Show it Works

- Review of published literature
- Analysis of 801 patients undergoing cleancontaminated operations:
 - 1g cefazolin
 - 1g cefazolin + 1g 3 hours later
- If procedure > 3 hours, then rate of SSI reduced from 6.1 to 1.3


Mechanical Bowel Prep?

- Should we give?
- Just bowel prep?
 - Risk of anastamotic leak?
- Bowel prep + PO antibiotics?

MBP (no PO abx) and SSI


Test for heterogeneity p = 0.016, I² = 50.4

DukeMedicine

Slim et al. Ann Surg 2009;249:203-9

MBP and Harm? Anastamotic Leak

Test for heterogeneity p = 0.492, I² = 0

DukeMedicine

Slim et al. Ann Surg 2009;249:203-9

DUKE INFECTION CONTROL OUTREACH

dicon

Oral + IV Antibiotics?

- Reviewed 182 RCTs comparing different prophylactic regimens
 - Elective and emergency procedures included
- 13 trials met criteria to compare combined oral and intravenous antibiotic vs. IV alone

Nelson et al. Cochrane Database Syst Rev 2009; 21:CD001181

Oral + IV Antibiotics?

Analysis 6.1. Comparison 6 Combined oral and intravenous versus oral or intravenous alone, Outcome I Surgical wound infection: oral + iv versus iv alone.

rent

Review: Antimicrobial prophylaxis for colorectal surgery

Rev

Comparison: 6 Combined oral and intravenous versus oral or intravenous alone

Outcome: I Surgical wound infection: onal + tv versus tv alone

pro Study or subgroup Weight Combined Oral % IV IV Alone **Risk Ratio Risk Ratio** n/N M-H,Random,95% CI M-H.Random,95% CI n/N Coppa 1988 9/169 15/141 10.5 % 050 [0.23, 1.11] Fl luded Espin-Basany 2005 15/200 6/100 85% 1.25 [0.50, 3.12] 046 [0.21, 1.01] Ishida 2001 8/72 17/71 11.0 % Kalser 1983 2/63 7/56 35% 0.25 [0.06, 1.17] • 13 0.31 [0.12, 0.78] Khubchandani 1989 5/55 14/47 80% Lau 1988 3/65 5/67 41% 0.62 [0.15, 2.48] otic com Lazorthes 1982 1/30 7/30 2.0 % 0.14 [0.02, 1.09] Lewis 2002 5/104 17/104 7.8 % 0.29 [0.11, 0.77] McArdle 1995 8/62 20/87 11.4% 0.56 [0.26, 1.19] VS. 9.45 [0.53, 169.95] Peruzzo 1987 0/41 1.0 % 4/39 Reynolds 1989 9/107 26/223 12.1% 0.72 [0.35, 1.49] Stellato 1990 3/51 2/51 2.7% 1.50 [0.26, 8.60] Taylor 1994 0.60 [0.34, I.04] 17/159 30/168 17.2 % Total (95% CI) 1176 1186 100.0 % 0.55 [0.41, 0.74] Total events 89 (Combined Oral % IV), 166 (IV Alone) Heterogeneity: Tau² = 0.05; Chi² = 14.78, df = 12 (P = 0.25); I² = 19% Test for overall effect; Z = 3.93 (P = 0.000084) 0.1 0.2 0.5 1 2 5 10 DUKE Favours treatment Favours control **Duke**Medicine INFECTION acon Nelson et al. Cochrane Database Syst CONTROL Rev 2009; 21:CD001181

Consensus Recommendation

- Now three of the four major guidelines recommend the use of MBP + oral antibiotics for colorectal procedures
 - SHEA/IDSA
 - WHO
 - ACS/SIS
 - (not discussed in CDC/HICPAC)

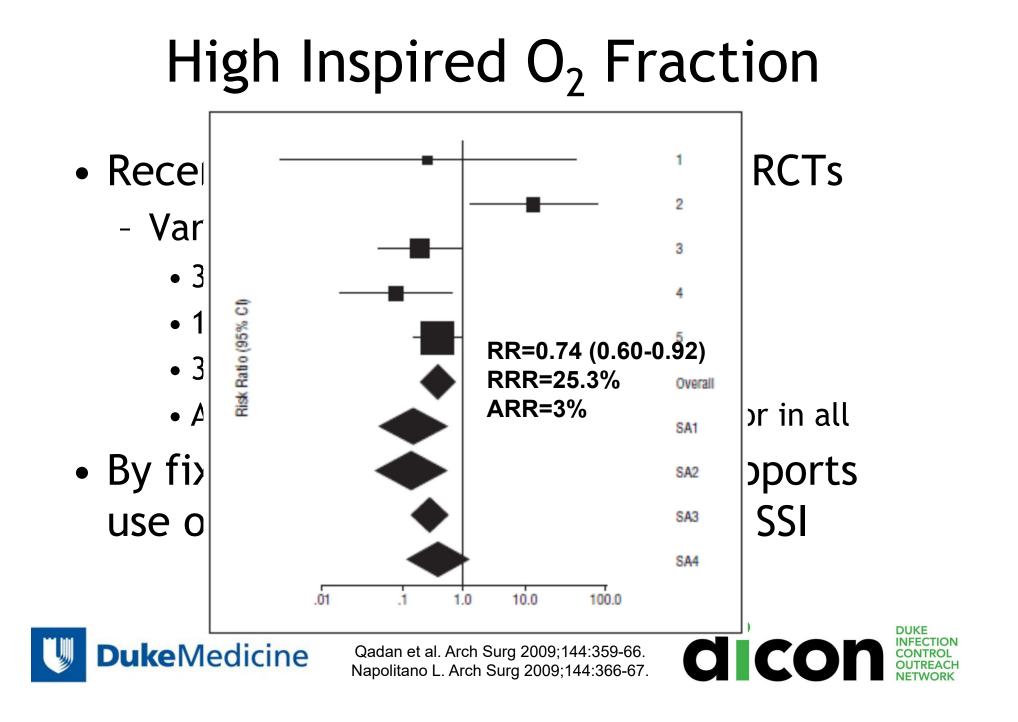
Basic Practices - Beyond SCIP

- Oxygenation
- Skin prep
- Use of plastic wound protectors
- WHO checklist

Oxygen and SSI: Basic Science

- O₂ is important for wound healing
- O₂ correlated with collagen deposition
- Tissue hypoxia is a risk factor for wound infection and dehiscence
- Superoxide production by leukocytes proportional to Po2
- Many antibiotics require oxygen to exert lethal effects on bacteria

Hunt and Pai. Surg Gynecol Obstet. 1972;135:561-7. Hartmann et al. Eur J Surg. 1992;158:521-6. Hopf et al. *Arch Surg*. 1997;132:997-1004. Allen et al. Arch Surg 1997;132:997-1005. Kohanski et al. Cell 2007;130:797-1 DUKE


High Inspired O₂ Fraction

- Recent meta-analysis reviewed 5 RCTs
 - Variation in methods noted
 - 3 included nitrous oxide mixture
 - 1 provided O2 for 6 hours
 - 3 colorectal
 - Antibiotic prophylaxis not controlled for in all
- By fixed-effects method, data supports use of 80% FiO2 for prevention of SSI

Qadan et al. Arch Surg 2009;144:359-66. Napolitano L. Arch Surg 2009;144:366-67.

Harm?

- PROXI Trial
 - n=1400 patients undergoing acute or elective laparotomy
 - Randomized to 80% v. 30% FiO₂
 - SSI dx in 14 days
- No difference in rates of SSI for two groups
 - Approx 20% for each group
 - Adjusted RR=0.91 (0.69 to 1.20)
- No difference in adverse outcomes between two groups

Meyhoff et al. JAMA 2009;302:1543-50. Hunt and Hopf. JAMA 2009;302:1588-9.

Implementation?

- Not easy
- Reasonable chance being given high FiO₂ during procedure
- Difficult to develop process to continue high FiO₂ after procedure

Skin Prep

- Use alcohol-containing skin prep (when possible)
- Add a disinfectant
 - CHG likely superior to PI

CHG Uses in Infection Control

Application	Evidence				
Skin antisepsis					
CVC site preparation	50% better than povidone-iodine (catheter colonization)				
Surgical hand scrub	86-92% reduction in flora				
Source control in ICUs	Reduction in skin flora; reduce risk of CLABSI 6-fold				
Preoperative scrub	Superior to other antiseptics in reducing skin flora at surgical site				
Impregnated devices					
Vascular catheter dressings	Reduction in catheter colonization (40- 50%); decrease rate of CLABSI				
Vascular catheters	Reduction in catheter colonization (55%); in BSI (40%) in high-risk groups				

Milstone et al, *Clin Infect Dis* 2008; 46:274–81. Bleasdale et al, *Arch Intern Med* 2007; 167:2073-9. Timsit et al. JAMA 2009; 301:1231-41.

CHG v. PI?

- Finally, RCT comparing CHG-ETOH vs. PI-ETOH
- 1,147 women undergoing CSEC
- Rate of SSI lower with CHG/EtOH (p=0.02)
 - CHG/EtOH SSI rate=3.0
 - PI/EtOH SSI rate=4.9

Tuuli et al. NEJM 2016;374:647.

Subgroup	Chlorhexidine– Alcohol	Iodine– Alcohol	Relative Risk (95% CI)	P Value for Interaction
0.01	no. of events/			
Type of cesarean delivery				0.22
Scheduled	8/334	21/335	0.38 (0.17–0.85)	
Unscheduled	15/238	21/240	0.72 (0.38–1.36)	
Obese				0.70
Yes	18/402	30/387	0.58 (0.33–1.02)	
No	5/170	12/188	0.46 (0.17–1.28)	
Skin-closure type				0.12
Staples	9/108	9/107	0.99 (0.41–2.40)	
Suture	14/464	33/467	0.43 (0.23–0.79)	
Chronic medical condition	n			0.59
Yes	5/107	11/101	0.43 (0.15–1.19)	
No	18/465	31/474	0.59 (0.34–1.04)	
Diabetes				0.84
Yes	2/55	5/65	← ● 0.47 (0.10-2.34)	
No	21/517	37/510	0.56 (0.33–0.94)	
			0.2 1.0 5.0	
			Chlorhexidine–Alcohol Iodine–Alcohol Better Better	

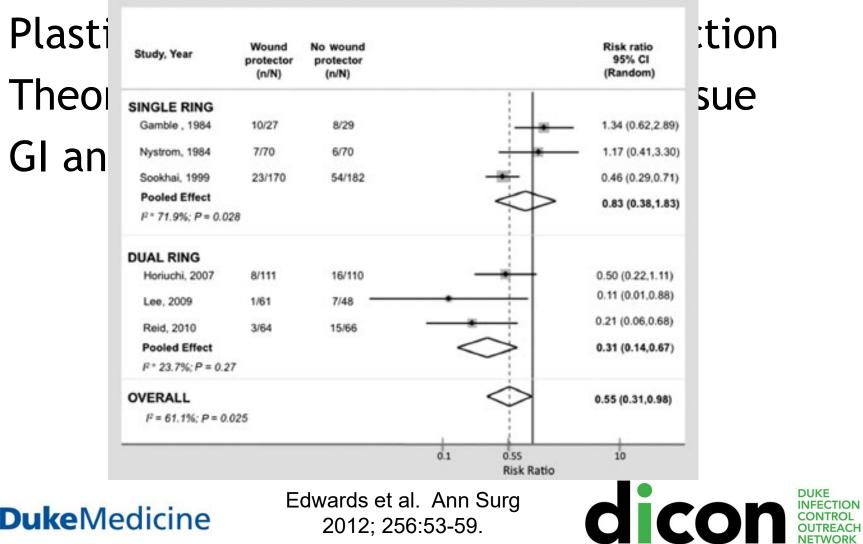
Tuuli et al. NEJM 2016;374:647.

FDA Warning: CHG

- FDA released a Safety Communication warning about potential for rare but serious allergic reactions to CHG
- Data
 - 1969-2015: 52 cases of anaphylaxis (2 deaths)
 - Big increase since 2010
- While need to monitor for these important reactions, this issue does not change recommendations about CHG

http://www.fda.gov/Drugs/Dr ugSafety/ucm530975.htm.

Impervious Plastic Wound Protectors


- Plastic sheath that facilitates retraction
- Theoretically improves health of tissue
- GI and biliary tract procedures

Edwards et al. Ann Surg 2012; 256:53-59.

Impervious Plastic Wound Protectors

- Plasti
- Theorem
- GI an

- Checklists
 - Proven method for prevention of complications
 - Change system AND individual behavior
 - CLABSI
- New checklist for surgical care
 - 19 item surgical safety checklist
 - Sign in, Time out, Sign out
 - 8 institutions throughout world
 - Prospective, quasi-experimental study of patients before (n=3733) and after (n=3955) implementation
 - Non-cardiac surgery
 - During "Time-Out," OR team had to confirm that prophylactic antibiotics have been administered ≤ 60 min before incision is made or that antibiotics are not indicated

Reference Pronovost et al. N Engl J Med 2006;355:2725-32. Haynes et al. N Engl J Med 2009;360:491-9.

		No. of	No. of	_
Site	Location	Beds	Operating Rooms	Туре
Prince Hamzah Hospital	Amman, Jordan	500	13	Public, urban
St. Stephen's Hospital	New Delhi, India	733	15	Charity, urban
University of Washington Medical Center	Seattle, Washington	410	24	Public, urban
St. Francis Designated District Hospital	Ifakara, Tanzania	371	3	District, rural
Philippine General Hospital	Manila, Philippines	1800	39	Public, urban
Toronto General Hospital	Toronto, Canada	744	19	Public, urban
St. Mary's Hospital*	London, England	541	16	Public, urban
Auckland City Hospital	Auckland, New Zealand	710	31	Public, urban

Haynes et al. N Engl J Med 2009;360:491-9.

Site No.	No. of Patients Enrolled		Surgical-Site Infection		Prophy Antibioti Approp (N=6	cs Given oriately	Dea	ath	Any Complication	
	Before	After	Before	After	Before	After	Before	After	Before	After
					perce	nt				
1	524	598	4.0	2.0	98.1	96.9	1.0	0.0	11.6	7.0
2	357	351	2.0	1.7	56.9	76.9	1.1	0.3	7.8	6.3
3	497	486	5.8	4.3	83.8	87.7	0.8	1.4	13.5	9.7
4	520	545	3.1	2.6	80.0	81.8	1.0	0.6	7.5	5.5
5	370	330	20.5	3.6	29.8	96.2	1.4	0.0	21.4	5.5
6	496	476	4.0	4.0	25.4	50.6	3.6	1.7	10.1	9.7
7	525	585	9.5	5.8	42.5	91.7	2.1	1.7	12.4	8.0
8	444	584	4.1	2.4	18.2	77.6	1.4	0.3	6.1	3.6
Total	3733	3955	6.2	3.4	56.1	82.6	1.5	0.8	11.0	7.0
P value			<0.0	001	<0.0	001	0.0	03	<0.	001

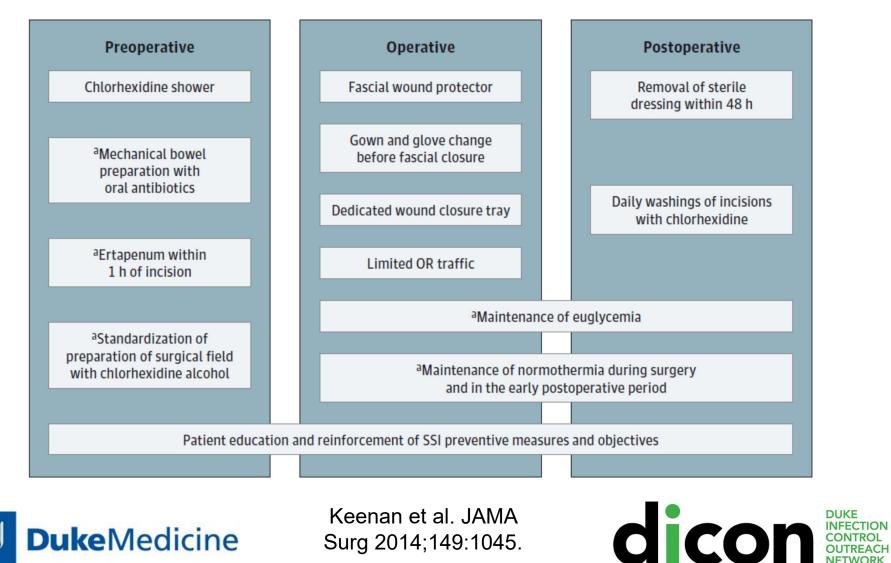
Haynes et al. N Engl J Med 2009;360:491-9.

Other Interventions

- Maintain normothermia
 - Devices make easier
 - Only in procedures with general anesthesia
- Surveillance
 - Use automated data
 - Feedback data to surgeons/surgical personnel
 - Provide education to surgeons and patients

Special Strategies - To Do or Not?

- "Duke" colorectal bundle
 - Glove change for closure?
- Screening and decolonization for S. *aureus*
- Antimicrobial sutures


The Duke Colorectal Bundle

- High adverse outcomes following colorectal procedures (>20%)
 ACS-NSQIP data
- Created and implemented a "bundle" of evidence-based and "common sense" interventions
 - Multidisciplinary
 - Monthly review meetings
 - Items included on a "checklist"

Bundle Components

DukeMedicine

Results

- Retrospective analysis of 559 randomly selected patients from 2008 through 2012
 - Propensity matched on multiple potential confounders (age, sex, BMI, DM, chemo, XRT, total op time, lap approach, rectal)
 - 212 patients in each group
 - No major differences in patient characteristics

Results

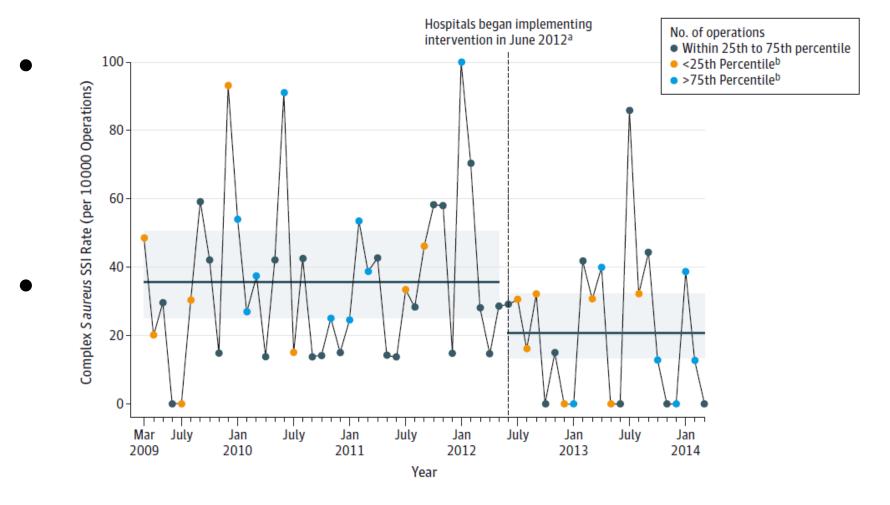
	Prebundle (n=212)	Postbundle (n=212)	p-value
Superficial-incisional SSI	41 (19.3)	12 (5.7)	<0.001
Deep-incisional SSI	3 (1.4)	0	0.25
Organ-Space SSI	11 (5.2)	6 (2.8)	0.32
Wound disruption	5 (2.4)	3 (1.4)	0.72
Postop sepsis	18 (8.5)	5 (2.4)	0.009
LOS - med (IQR)	5.5 (4-8)	5.0 (3-7)	0.05
30-d readmit	32 (15.1)	19 (9.0)	0.14

Successes/Challenges

- Bundle considered a success
 - Increased adherence to evidence-based and systematic practices
 - Key "implementation" components:
 - Multidisciplinary
 - Monthly review, open discussion
- Limitations
 - Retrospective, quasi-experimental
 - Elective procedures only
 - Bundle component vs. all?
- Challenges
 - What components to include?
 - Scheduling
 - Prioritization
 - Must have a surgeon "champion"

Glove/Instrument Change

- ACS/SIS recommended changing gloves and instruments for closure in colorectal surgery
- Based on expert concensus
- Frankly, not a bad idea


SA Screening/Decolonization

- If known to be colonized, should decolonize
 - ASHP, WHO, ACS, SHEA
- BUT
 - Should you screen??
- Controversial!

SA Screening/Decolonization

Schweizer et al. JAMA 2015;313:2162.

DukeMedicine

SA Screening/Decolonization

- Many factors to consider
 - Baseline rate of S. aureus SSI
 - Adherence to basic practices
 - Ability to follow up protocol
 - Resources to implement protocol
 - How to screen? How to decolonize?
- Currently recommended as a "Special Approach"

Antimicrobial Sutures

- Important:
 - Foreign devices increase the risk of SSI
 - Presence of sutures decreases inoculum required for SSI
 - 10^6 to 10^2
- SHEA/IDSA guidelines not recommended
- WHO and ACS guidelines recommended for clean and clean-contaminated abdominal cases
 - Meta-analysis published in 2016 that included 6 additional RCTs

Antimicrobial Sutures

	Triclosan-c	oated	Uncoa	ted		Risk Ratio		Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% Cl	Year	M-H, Fixed, 95% Cl
Deliaert 2009	0	26	0	26		Not estimable	2009	
Rasic 2011	4	91	12	93	3.4%	0.34 [0.11, 1.02]	2011	
Galal 2011	17	230	33	220	9.7%	0.49 [0.28, 0.86]	2011	
Baracs 2011	23	188	24	197	6.8%	1.00 [0.59, 1.72]	2011	
Williams 2011	10	75	14	75	4.0%	0.71 [0.34, 1.51]	2011	
Zhang 2011	2	51	5	50	1.5%	0.39 [0.08, 1.93]	2011	
Seim 2012	16	160	17	163	4.9%	0.96 [0.50, 1.83]	2012	· · · · · · · · · · · · · · · · · · ·
Turtiainen 2012	31	139	30	137	8.7%	1.02 [0.65, 1.59]	2012	· · · ·
lsik 2012	9	170	19	340	3.7%	0.95 [0.44, 2.05]	2012	
Thimour-Bergstrom 2013	23	184	38	190	10.8%	0.63 [0.39, 1.01]	2013	
Nakamura 2013	9	206	19	204	5.5%	0.47 [0.22, 1.01]	2013	
Justinger 2013	31	485	42	371	13.7%	0.56 [0.36, 0.88]	2013	
Diener 2014	87	587	96	598	27.4%	0.92 [0.71, 1.21]	2014	
Total (95% CI)		2592		2664	100.0%	0.76 [0.65, 0.88]		•
Total events	262		349					
Heterogeneity: Chi ² = 14.57,		0.20); I ² =	: 25%					
Test for overall effect: Z = 3.6			ana 5000					0.01 0.1 1 10 100 Favours triclosan-coated Favours uncoated

Guo et al. J Surg Research 2016;201:105

Unresolved

- CHG baths before surgery
- Intranasal CHG
- Antibiotic-impregnated, implantable sponges
 - Gentamicin

One Last Thought about Interventions

- SCIP SSI measures have been largely removed
- Cynical view
 - All the gain in best practices via SCIP will gradually degrade
- So...
 - Need to remain vigilant for increases in SSI during and after transition
 - Can SCIP measures still be tracked??

Implementation

- Based on 4 Es
 - Engage
 - Clear communication about why important
 - Ex: physician champions
 - Educate
 - The "what to do/not do"
 - Ex: Education for patients/family
 - Execute
 - Reduce barriers and improve adherence
 - Ex: QI methodology (six sigma, etc.)
 - Evaluate
 - Measurement
 - Ex: Longitudinal evaluation of outcomes and process

Role of IP in Implementation

Engage

- Involve hospital leadership
- Identify physician champions
- Identify multidisciplinary teams
- Evidence-based practices
- Foster a culture of safety
- Educate
 - Patients, surgeons, leadership

Role of IP in Implementation

- Execute
 - Quality improvement strategies
 - Maximize IT
 - Participate in a network/collaborative
 - Order sets
 - Protocols
 - Act on problems once identified!!
- Evaluate
 - Surveillance

Take Home Points

- SSI is the most common and most costly HAI
- Many different strategies are required to reduce SSI risk to lowest extent possible
- IPs play a critical role
- Not every hospital needs to approach SSI prevention the same way
 - But all hospitals need to at least use the basic strategies

Questions?

