Viral Hepatitis

William A. Rutala, Ph.D., M.P.H., C.I.C.
Director, Statewide Program for Infection Control and Epidemiology
and Professor of Medicine, University of North Carolina at Chapel Hill, NC, USA

Former Director, Hospital Epidemiology, Occupational Health and Safety, UNC Hospitals, Chapel Hill, NC
Viral Hepatitis - Overview

- Primary infection of the liver caused by at least five unrelated viruses: A, B, C, D, E
- HAV and HEV
 - Fecal-oral route
 - Acute self-limited disease; no chronic infection
- HBV, HCV, HDV
 - Percutaneous or mucosal exposures to blood
 - Chronic infection – major causes of cirrhosis and hepatocellular carcinoma worldwide
Viral Hepatitis – Historical Perspective

- “Infectious”
- “Serum”
- Viral hepatitis
- “mis-reported Non-pathogenic

A → NANB
B → D
C → Non-pathogenic
D → F, G, ?other
E → Enterically transmitted

Parenterally transmitted
Viral Hepatitis - Overview

<table>
<thead>
<tr>
<th>Type of Hepatitis</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>Source of virus</td>
<td>feces</td>
<td>blood/ blood-derived body fluids</td>
<td>blood/ blood-derived body fluids</td>
<td>blood/ blood-derived body fluids</td>
<td>feces</td>
</tr>
<tr>
<td>Route of transmission</td>
<td>fecal-oral</td>
<td>percutaneous permucosal</td>
<td>percutaneous permucosal</td>
<td>percutaneous permucosal</td>
<td>fecal-oral</td>
</tr>
<tr>
<td>Chronic infection</td>
<td>no</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>no</td>
</tr>
<tr>
<td>Prevention</td>
<td>pre/post-exposure immunization</td>
<td>pre/post-exposure immunization</td>
<td>blood donor screening; risk behavior modification</td>
<td>pre/post-exposure immunization; risk behavior modification</td>
<td>ensure safe drinking water</td>
</tr>
</tbody>
</table>
Clinical Features of Hepatitis

Common
- malaise
- anorexia
- nausea & vomiting
- fever

Less Common
- diarrhea
- arthralgias
- jaundice
- abdominal pain
- hepatomegaly
- pruritis
- rash
Enterically Transmitted Viral Hepatitis
Hepatitis A—Highlights

- Estimated 1.5 million clinical cases of hepatitis A annually worldwide
- Tens of millions of hepatitis A virus infections occur each year
- Transition to lower rates of endemic HAV infection occurring on a global scale
- Universal childhood vaccination effective in countries with varying endemic rates
 - Reduces morbidity and mortality

Wasley A, Epidemiologic Reviews 2006
Hepatitis A Virus

- RNA Picornavirus
- Single serotype worldwide
- Acute disease and asymptomatic infection
- No chronic infection
- Protective antibodies develop in response to infection - confers lifelong immunity
- Vaccine preventable
Transmission of Hepatitis A Virus

- Fecal-oral transmission leads to spread between close contacts
- Greatest period of communicability: 2 weeks before onset of jaundice
- Stable in environment for months
Transmission of Hepatitis A Virus

- Close personal contact
 (e.g., household contact, sex contact)

- Contaminated food (water)
 (e.g., infected food handlers, produce)

- Blood exposure
 (e.g., injecting drug use, transfusion)
Hepatitis A - Clinical Features

| Incubation period | Average 30 days
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Range 15-50 days</td>
</tr>
</tbody>
</table>
| Jaundice by age | <6 yrs <10%
| | 6-14 yrs 40%-50%|
| | >14 yrs 70%-80%|
| Case fatality rate| 0.3% (0.2%-2.0%)|
| Complications | Fulminant; cholestatic; relapsing|
| Chronic sequelae | None (prolonged shedding in neonates and immunocompromised) |
Relative Frequency of Jaundice with Hepatitis A, by Age
Concentration of Hepatitis A Virus in Various Body Fluids

Source: Viral Hepatitis and Liver Disease 1984;9-22; J Infect Dis 1989;160:887-890
Events in Hepatitis A Virus Infection

- Clinical illness
- Infection
- Viremia
- HAV in stool
- ALT
- IgM
- IgG

Week
0 1 2 3 4 5 6 7 8 9 10 11 12 13
Patterns of Hepatitis A Virus Infection Worldwide
<table>
<thead>
<tr>
<th>Endemicity</th>
<th>Disease Rate</th>
<th>Age at Infection</th>
<th>Transmission patterns</th>
</tr>
</thead>
<tbody>
<tr>
<td>High</td>
<td>Low</td>
<td>Early childhood</td>
<td>Person to person; outbreaks uncommon</td>
</tr>
<tr>
<td>Intermediate</td>
<td>High</td>
<td>Late childhood/young adults</td>
<td>Person to person; food and waterborne outbreaks</td>
</tr>
<tr>
<td>Low</td>
<td>Low to high</td>
<td>Late childhood/young adults</td>
<td>Person to person; food and waterborne outbreaks</td>
</tr>
<tr>
<td>Very low</td>
<td>Very low</td>
<td>Adults</td>
<td>Travelers; outbreaks uncommon</td>
</tr>
</tbody>
</table>
Global Patterns of
Hepatitis A Endemicity

High
High/Intermediate
Intermediate
Low
Very Low
Epidemiologic Features of Hepatitis A in the United States

- Wide geographic and temporal variation in incidence
 - Areas with highest rates account for most reported cases
- Most disease occurs in the context of community-wide outbreaks
- Infection transmitted from person to person in households and extended family settings
 - Facilitated by asymptomatic infection among children
- Groups at increased risk can be identified
 - Specific factor varies
 - Do not account for majority of cases
- No risk factor identified for 30%-40% of cases
Risk Factors Among Persons with Hepatitis A, Reported Cases, United States, 1990-2000

- Household or sexual contact: 14%
- Day care: 8%
- MSM: 10%
- Illicit drug users: 5%
- International travel: 5%
- Common source outbreak: 4%
- Other contact: 8%
- Unknown: 48%

Source: CDC Sentinel Counties
Source: Viral Hepatitis Surveillance Program
<table>
<thead>
<tr>
<th>Vaccine</th>
<th>Site/ Age Group</th>
<th>N</th>
<th>Vaccine Efficacy (95 % CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>HAVRIX ®* (GSK)</td>
<td>Thailand 1-16 yrs</td>
<td>38,157</td>
<td>94% (79%-99%)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VAQTA ®** (Merck)</td>
<td>New York 2-16 yrs</td>
<td>1,037</td>
<td>100% (85%-100%)</td>
</tr>
</tbody>
</table>

HEPATITIS A VACCINES

Recommended Dosages of Hepatitis A Vaccines

<table>
<thead>
<tr>
<th>Vaccine</th>
<th>Age (yrs)</th>
<th>Dose</th>
<th>Volume (mL)</th>
<th>2-Dose Schedule (mos)</th>
</tr>
</thead>
<tbody>
<tr>
<td>HAVRIX ® #</td>
<td>2-18</td>
<td>720 (EL.U.*)</td>
<td>0.5</td>
<td>0, 6-12</td>
</tr>
<tr>
<td></td>
<td>>18</td>
<td>1,440</td>
<td>1.0</td>
<td>0, 6-12</td>
</tr>
<tr>
<td>VAQTA ®##</td>
<td>2-18</td>
<td>25 (U**)</td>
<td>0.5</td>
<td>0, 6-18</td>
</tr>
<tr>
<td></td>
<td>>18</td>
<td>50</td>
<td>1.0</td>
<td>0, 6-12</td>
</tr>
</tbody>
</table>

* EL.U. – Enzyme-linked immunosorbent assay (ELISA) units
** Units
has 2-phenoxyethanol as a preservative
has no preservative
SAFETY OF HEPATITIS A VACCINE

- Most common side effects
 - Soreness/tenderness at injection site - 50%
 - Headache - 15%
 - Malaise - 7%

- No severe adverse reactions attributed to vaccine
- Safety in pregnancy not determined – risk likely low
- Contraindications - severe adverse reaction to previous dose or allergy to a vaccine component
- No special precautions for immunocompromised persons
Immunogenicity of Inactivated Hepatitis A Vaccines

• 2-dose series 6-18 months apart (dosage varies by manufacturer)

• 95%-100% had protective levels of antibody one month after receiving one dose

• 100% had protective levels of antibody one month after receiving second dose with high geometric mean titers
Prevention of Hepatitis A

● Worldwide
 ■ Hygiene and sanitation
 ◆ Handwashing and clean water sources
 ◆ Prevent contamination of fresh produce

● Low endemic countries
 ■ Preexposure vaccination
 ◆ All children aged ≥1 years
 ◆ Risk groups (travelers, MSM, illegal drug users, persons with chronic liver disease)
 ■ Postexposure prophylaxis (vaccine or IG)
 ◆ Household and sex contacts
 ◆ Common source exposure (prepared food by infected handler)
Hepatitis E Virus (HEV)
Hepatitis E—Highlights

Like HAV
- Fecal-oral
- Acute self-limiting infection
 - Exception—may persist in immunologically compromised host
- Vaccine preventable

Unlike HAV
- Incubation period ~10 days longer
- Clinical response dose-dependent
 - Not age dependent
 - Infection rare in children and household contacts
- Higher mortality overall
 - Much higher in pregnant women
- Sporadic disease very rare in developed countries, Ab relatively common
 - Not always associated with travel*
 - Zoonotic source

* Autochthonous

Purcell RH, Emerson SU, J Hepatology 2008
First Recognized Outbreak of Hepatitis E New Delhi, India (1956)

- 35,000 cases acute jaundice
- City water system contaminated by sewage
- Highest attack rate persons 15-40 years old
- Case-fatality rate 10.5% among pregnant women
- Originally thought to be hepatitis A
History

- 1983 human challenge experiment
 - Ingested pooled stool from outbreak-related cases
 - Developed acute non-A, non-B hepatitis
 - Excretion of virus-like particles
 - Stool infectious for non-human primates
- Classified enterically-transmitted NANB hepatitis
- 1990 HEV genome cloned
 - Classified as calicivirus
Diagnosis of Acute Hepatitis E

- Clinical illness indistinguishable from other types of acute viral hepatitis (A, B, C, D,....)
- Definitive diagnosis requires laboratory confirmation
- Serology:
 - IgM anti-HEV, IgG anti-HEV
 - Acute infection - good sensitivity and specificity
 - Prevalent infection - discordance between tests
- Research labs
 - HEV RNA by PCR (serum, stool, liver)
 - HEVAg by immunofluorescent probe (liver)
Hepatitis E - Clinical Features

<table>
<thead>
<tr>
<th>Feature</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Incubation period</td>
<td>Average 40 days; Range 15-60 days</td>
</tr>
<tr>
<td>Clinical illness</td>
<td>Case/infection ratio and severity increase with age</td>
</tr>
<tr>
<td>Chronic sequelae</td>
<td>None ("chronic" viremia recently reported in transplant patients)</td>
</tr>
<tr>
<td>Case-fatality rate</td>
<td>Overall 1-3%</td>
</tr>
<tr>
<td></td>
<td>Pregnant women 15-20%</td>
</tr>
<tr>
<td>Factors related to increased severity</td>
<td>Chronic liver disease, large inoculum, pregnancy</td>
</tr>
</tbody>
</table>
Hepatitis E in Pregnancy

- Reasons for poor outcomes are unclear
- Most severe in 3rd trimester
 - 1/2: asymptomatic or mild HEV infection
 - 1/2: acute HE
 - 1/3 have FHF (fulminant hepatic failure, in resource-poor settings: high mortality)
 - 2/3 preterm delivery
 - High rates of obstetric complications
- Vertical transmission is common with 3rd trimester
 - Rate 33%-100%
 - Clinical outcome in infants is highly variable
 - Asymptomatic infection to hepatic necrosis
 - Hypoglycemia and hypothermia associated with mortality
Treatment

- Supportive
- No specific antiviral therapy
- Acute HE in pregnant women
 - No published data on potential benefits of early delivery
Epidemiologic Features of HEV

- Responsible for sporadic cases of acute hepatitis and outbreaks
- Mode of transmission fecal-oral
 - Recent report of solid organ transplant-related
- Pattern
 - Outbreaks - fecally contaminated drinking water
 - Sporadic cases - not known
- Highest attack rate in young adults
- Minimal person-to-person transmission
- Animal reservoir
Geographic Distribution of HEV

Outbreaks or Confirmed Infection in >25% of Sporadic Non-ABC Hepatitis

HEV may be most common etiology of acute viral hepatitis
“Endemic” Countries

- Outbreaks
 - Waterborne
 - Flooding, disruptions in water systems
- Sporadic Hepatitis E
 - HEV accounts for a variable proportion of acute viral hepatitis
 - Source of transmission not clear
“Non-Endemic” Countries

- No outbreaks
- Sporadic HE
 - Travel-related
 - Most commonly after travel to Asia, especially India and China
 - Domestically acquired
 - Rare
 - Source unknown
Prevention of Hepatitis E

- Treatment - None
- Vaccine – effective, high-risk populations
- Immune globulin - Not effective
- Clean and reliable water supply
 - Virus probably inactivated by boiling
 - Effect of chlorination not known
- Proper sanitation (e.g., safe disposal of human and animal sewage)
Bloodborne Viral Hepatitis

Hepatitis B Virus
Hepatitis C Virus
Hepatitis D Virus
Bloodborne Viral Hepatitis
HBV and HCV—Highlights

● HBV
 ■ Status of universal childhood immunization

● HBV and HCV
 ■ Transfusion Safety
 ■ Injection Safety
 ■ Changing epidemiology
 ■ Chronic disease burden
Hepatitis B Virus
Acute Hepatitis B Virus Infection with Recovery

Typical Serologic Course

<table>
<thead>
<tr>
<th>Titer</th>
<th>Symptoms</th>
<th>HBeAg</th>
<th>anti-HBe</th>
<th>Total anti-HBc</th>
<th>HBsAg</th>
<th>IgM anti-HBc</th>
<th>anti-HBs</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>28</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>32</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>36</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>52</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Ten Leading Causes of Infectious Disease Deaths Worldwide (2000)

<table>
<thead>
<tr>
<th>Disease</th>
<th>Deaths per Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lower resp tract infections</td>
<td>~3.5 million</td>
</tr>
<tr>
<td>HIV/AIDS</td>
<td>~3.0 million</td>
</tr>
<tr>
<td>Diarrheal diseases</td>
<td>~2.2 million</td>
</tr>
<tr>
<td>Tuberculosis</td>
<td>~2.0 million</td>
</tr>
<tr>
<td>Malaria</td>
<td>~1-3 million</td>
</tr>
<tr>
<td>Measles</td>
<td>~888,000</td>
</tr>
<tr>
<td>Hepatitis B</td>
<td>~750,000</td>
</tr>
<tr>
<td>Pertussis</td>
<td>~355,000</td>
</tr>
<tr>
<td>Neonatal tetanus</td>
<td>~300,000</td>
</tr>
<tr>
<td>Hepatitis C</td>
<td>~250,000</td>
</tr>
</tbody>
</table>

Source: CDC, WHO, UNICEF, UNAIDS
Global and US Disease Burden from Bloodborne Viral Infections

<table>
<thead>
<tr>
<th>Virus</th>
<th>Estimated No. Chronic Infections</th>
<th>Global</th>
<th>US</th>
</tr>
</thead>
<tbody>
<tr>
<td>HBV</td>
<td>370 million</td>
<td></td>
<td>1.25 million</td>
</tr>
<tr>
<td>HCV</td>
<td>130 million</td>
<td></td>
<td>3-4 million</td>
</tr>
<tr>
<td>HIV</td>
<td>40 million</td>
<td></td>
<td>1 million</td>
</tr>
<tr>
<td>HIV / HBV</td>
<td>(3–4 million)</td>
<td>(250,000)</td>
<td></td>
</tr>
<tr>
<td>HIV / HCV</td>
<td>(4–5 million)</td>
<td>(40-50,000)</td>
<td></td>
</tr>
</tbody>
</table>

Sources: WHO and CDC, unpublished data.
Features of HBV & HCV Infection

<table>
<thead>
<tr>
<th></th>
<th>HBV</th>
<th>HCV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Virus Classification</td>
<td>DNA Hepadnavirus</td>
<td>RNA Flavivirus</td>
</tr>
<tr>
<td>Incubation period – average</td>
<td>8–12 wks</td>
<td>6–7 wks</td>
</tr>
<tr>
<td>– range</td>
<td>6–26 wks</td>
<td>2–26 wks</td>
</tr>
<tr>
<td>Specific serologic markers</td>
<td></td>
<td></td>
</tr>
<tr>
<td>acute infection</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>active infection</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>chronic infection</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Clinical illness (jaundice)</td>
<td>30%–50%</td>
<td>20%</td>
</tr>
<tr>
<td>Chronic infection</td>
<td>90% (infants)</td>
<td>~70%</td>
</tr>
<tr>
<td></td>
<td>5–10% (adults)</td>
<td></td>
</tr>
<tr>
<td>Mortality from CLD, cirrhosis, HCC</td>
<td>25%</td>
<td>1-5%</td>
</tr>
</tbody>
</table>
Relative Efficiency of Transmission by Type of Exposure

<table>
<thead>
<tr>
<th>Type of exposure to infected source</th>
<th>Efficiency of transmission</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transfusion</td>
<td>++++</td>
</tr>
<tr>
<td>Injecting drug use</td>
<td>++++</td>
</tr>
<tr>
<td>Unsafe injections</td>
<td>++++</td>
</tr>
<tr>
<td>Needlestick</td>
<td>++++</td>
</tr>
<tr>
<td>Sexual</td>
<td>++++</td>
</tr>
<tr>
<td>Perinatal</td>
<td>++++</td>
</tr>
<tr>
<td>Non-intact skin</td>
<td>++</td>
</tr>
</tbody>
</table>
Relative Infectivity of HBV, HCV, HIV

<table>
<thead>
<tr>
<th></th>
<th>HBV</th>
<th>HCV</th>
<th>HIV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Copies/mL</td>
<td>10^{8-9}</td>
<td>10^5</td>
<td>10^3</td>
</tr>
<tr>
<td>Environmental stability</td>
<td>++++</td>
<td>++</td>
<td>-</td>
</tr>
<tr>
<td>Infectious after drying at room temperature</td>
<td>$>7d$</td>
<td>$>16h$</td>
<td>0 ($<4d$)</td>
</tr>
</tbody>
</table>

Environmental Stability of HBV and HCV Facilitates Their Transmission

● More rapid acquisition among IDUs
 ■ Clean needles and syringes alone insufficient to interrupt transmission because virus can live on contaminated drug preparation equipment (i.e., cookers and cotton)

● Iatrogenic transmission
 ■ Virus can live in contaminated multi-dose vials and on needles and syringes
Routes of HBV Transmission

<table>
<thead>
<tr>
<th>Age Group</th>
<th>Routes of Infection</th>
</tr>
</thead>
<tbody>
<tr>
<td>Newborn</td>
<td>Mother to infant (perinatal)</td>
</tr>
<tr>
<td>Childhood</td>
<td>Household (non-intact skin)</td>
</tr>
<tr>
<td>Adolescent/Adult</td>
<td>Sexual contact</td>
</tr>
<tr>
<td></td>
<td>Injecting drug use equipment</td>
</tr>
<tr>
<td></td>
<td>Occupational exposures</td>
</tr>
<tr>
<td>All ages</td>
<td>Unsafe injections</td>
</tr>
<tr>
<td></td>
<td>Transfusion from unscreened donors</td>
</tr>
<tr>
<td></td>
<td>Other health care related</td>
</tr>
</tbody>
</table>
Global Differences in HBV Transmission Patterns

<table>
<thead>
<tr>
<th>Chronic Infection (% immune)</th>
<th>Primary Age at Infection</th>
<th>Primary Modes of Transmission</th>
</tr>
</thead>
<tbody>
<tr>
<td>High >8% (>60%)</td>
<td>Infants</td>
<td>Perinatal, horizontal, unsafe injections, unscreened blood</td>
</tr>
<tr>
<td>Intermediate 2-7% (20-60%)</td>
<td>Young children</td>
<td>Perinatal, horizontal, unsafe injections, sexual, IDU</td>
</tr>
<tr>
<td>Low <2% (5-20%)</td>
<td>All age groups</td>
<td>Sexual, IDU</td>
</tr>
<tr>
<td></td>
<td>Adolescents Adults</td>
<td></td>
</tr>
</tbody>
</table>
Geographic Distribution of Chronic HBV Infection

HBsAg Prevalence

- >8% - High
- 2-7% - Intermediate
- <2% - Low

(CDC)
Outcome of HBV Infection by Age at Infection

<table>
<thead>
<tr>
<th>Age at Infection</th>
<th>Chronic Infection (%)</th>
<th>Symptomatic Infection (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Birth</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td>1-6 months</td>
<td>20</td>
<td>80</td>
</tr>
<tr>
<td>7-12 months</td>
<td>40</td>
<td>60</td>
</tr>
<tr>
<td>1-4 years</td>
<td>60</td>
<td>40</td>
</tr>
<tr>
<td>>5 years</td>
<td>80</td>
<td>20</td>
</tr>
</tbody>
</table>

Symptomatic Acute Hepatitis B

Chronic Infection
Global Strategy to Prevent HBV Transmission

- Hepatitis B Vaccination
 - Routine infant vaccination (all countries)
 - Catch-up vaccination of older children/adolescents
 - Vaccination of high-risk groups

- Prevention of iatrogenic transmission
 - Routine screening of transfused blood
 - developed countries - 100% screen
 - least developed countries - 35% screen (?)
 - Safe injection practices
 - Proper infection control practices
Risk Factors Reported by Cases of Acute Hepatitis B, United States, 2000-2003

- Heterosexual 39%
- MSM 26%
- Injecting drug use 17%
- None identified 14%
- Other 4%*
* Other - Household contact, occupational exposure, hemodialysis, institutionalization, transfusion

Source: Adapted from Sentinel Counties and NNDSS, CDC
Recent HBV Outbreaks Associated with Blood Glucose Monitoring

- **Shared fingerstick devices**
 - 1999 – VA – Assisted Living Centers – 4 cases
 - 1999 – CA – Nursing Home – 4 cases
 - 2003 – MS – Nursing Home – 15 cases
 - 2003 – CA – Assisted Living Center – 8 cases
 - 2005 – VA – Assisted Living Centers (2) – 11 cases

- **Dedicated fingerstick devices**
 - 1999 – CA – Skilled Nursing Facility – 5 cases
 - 2002 – CA – Subacute Hospital – 3 cases
 - 2003 – NC – Nursing Home – 11 cases
Hepatitis B in Health-Care Personnel
Prevalence of HBV Serologic Markers in 624 Hospital Personnel and 462 Nonhospital Controls

Occupational Category	Cumulative Percent Positive	N
Emergency Ward Nurses | 30 | 30
Blood Bank Personnel | 26 | 26
Laboratory Technicians | 39 | 39
Pathology Staff | 85 | 85
Intravenous Teams | 68 | 68
Surgical House Officers | 66 | 66
Intensive Care Nurses | 94 | 94
Medical House Officers | 89 | 89
General Ward Nurses | 76 | 76
Dieticians | 19 | 19
Volunteer Blood Donors | 462 | 462

Glenhan, J. L. and Ryan, D. M., 1982
Immunogenicity of Heptavax-B®

Percent of Anti-HBs Positive Vaccines

Immunogenicity of Hepatitis B Vaccine

Percent Anti-HBs Positive

1st 2nd 3rd Injections

0 1 2 3 6 9 12 15 18 Months

Szmuness, W. et al., 1980
Hepatitis B Vaccine

<table>
<thead>
<tr>
<th>Factor</th>
<th>Response</th>
<th>Factor</th>
<th>Response</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age 20-29</td>
<td>95%</td>
<td>Diabetes</td>
<td>70-80%</td>
</tr>
<tr>
<td>Age 30-39</td>
<td>90%</td>
<td>Liver disease</td>
<td>60-70%</td>
</tr>
<tr>
<td>Age 40-49</td>
<td>86%</td>
<td>Gender</td>
<td>Female>male</td>
</tr>
<tr>
<td>Age 50-59</td>
<td>71%</td>
<td>Obesity</td>
<td>Decreased</td>
</tr>
<tr>
<td>Age ≥60</td>
<td>47%</td>
<td>Smokers</td>
<td>Decreased</td>
</tr>
<tr>
<td>Renal Failure</td>
<td>50-80%</td>
<td>Gluteal injection</td>
<td>Decreased</td>
</tr>
<tr>
<td>HIV infection</td>
<td>50-70%</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Response is defined as ≥ 10 mlU/mL
Hepatitis B Vaccine: Administration 2

- **Schedule**
 - 0, 1, 6 mo
 - 0, 1, 2, 12 mo (more rapid antibody rise) (Engerix)

- **Pre-exposure**
 - ACP: Three doses, obtain titer (1-6 mo). If antibody negative, provide up to 3 additional doses (titer 1-2 mo after each dose)
 - If no response after 6 doses, provide HBIG for exposures
Figure 1. Long-Term Persistence of Anti-HBs in Persons in Whom Anti-HBs Levels above 9.9 SRU Developed after Standard Three-Dose Vaccination.
HBV: POST-EXPOSURE PROPHYLAXIS

<table>
<thead>
<tr>
<th>Exposed person</th>
<th>Source HBsAg+</th>
<th>Source HBsAg-</th>
<th>Source unknown</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unvaccinated</td>
<td>HBIG x 1</td>
<td>HBV vaccine</td>
<td>HBV vaccine</td>
</tr>
<tr>
<td></td>
<td>HBV vaccine</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vaccinated, Responder</td>
<td>No therapy</td>
<td>No therapy</td>
<td>No therapy</td>
</tr>
<tr>
<td>Vaccinated, Nonresponder</td>
<td>HBIG x 2 or</td>
<td>No therapy</td>
<td>If known high-risk</td>
</tr>
<tr>
<td></td>
<td>HBIG x 1 & HBV</td>
<td></td>
<td>source, treat as if</td>
</tr>
<tr>
<td></td>
<td>vaccine</td>
<td></td>
<td>source HBsAg+</td>
</tr>
<tr>
<td>Vaccinated, Response</td>
<td>Obtain anti-HBs</td>
<td>No therapy</td>
<td>Obtain anti-HBs</td>
</tr>
<tr>
<td>unknown</td>
<td>* If ok, no therapy</td>
<td></td>
<td>* If OK, no therapy</td>
</tr>
<tr>
<td></td>
<td>* If low, HBIG x 1</td>
<td></td>
<td>* If low, vaccine</td>
</tr>
<tr>
<td></td>
<td>& vaccine</td>
<td></td>
<td>booster</td>
</tr>
</tbody>
</table>

Adequate anti-HBs is $\geq 10 \text{ mIU/mL}$; HBIG = 0.06 mg/kg IM
Hepatitis C Virus

- RNA Flavivirus (Hepacivirus)
 - Discovery using recombinant DNA technology reported in 1989
 - Clinical entity (non-A, non-B hepatitis) in transfused patients reported late 1960s
 - Target organ liver
- Bloodborne (primarily) and sexually-transmitted
- No vaccine
 - Mutations occur during viral replication
 - Substantial heterogeneity (quasispecies) prevents effective neutralization
- Treatable and curable (most people free of virus in months)
Features of Hepatitis C Virus Infection

<table>
<thead>
<tr>
<th>Feature</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Incubation period</td>
<td>Average 6-7 weeks</td>
</tr>
<tr>
<td></td>
<td>Range 2-26 weeks</td>
</tr>
<tr>
<td>Acute illness (jaundice)</td>
<td>Mild (20%-30%)</td>
</tr>
<tr>
<td>Case fatality rate</td>
<td>Low</td>
</tr>
<tr>
<td>Chronic infection</td>
<td>75%-85%</td>
</tr>
<tr>
<td>Chronic hepatitis</td>
<td>70%</td>
</tr>
<tr>
<td>Mortality from CLD</td>
<td>1%-5%</td>
</tr>
</tbody>
</table>
Hepatitis C Virus Infection
Typical Serologic Course

<table>
<thead>
<tr>
<th>Time after Exposure</th>
<th>Titer</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Normal</td>
</tr>
<tr>
<td>1</td>
<td>ALT</td>
</tr>
<tr>
<td>2</td>
<td>ALT</td>
</tr>
<tr>
<td>3</td>
<td>ALT</td>
</tr>
<tr>
<td>4</td>
<td>ALT</td>
</tr>
<tr>
<td>5</td>
<td>ALT</td>
</tr>
<tr>
<td>6</td>
<td>ALT</td>
</tr>
<tr>
<td>1</td>
<td>anti-HCV</td>
</tr>
<tr>
<td>2</td>
<td>anti-HCV</td>
</tr>
<tr>
<td>3</td>
<td>anti-HCV</td>
</tr>
<tr>
<td>4</td>
<td>anti-HCV</td>
</tr>
</tbody>
</table>

Symptoms
Hepatitis C Virus Infection
United States

<table>
<thead>
<tr>
<th>Information</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>New infections per year 1985-89</td>
<td>242,000</td>
</tr>
<tr>
<td>2006</td>
<td>20,000</td>
</tr>
<tr>
<td>Deaths from acute liver failure</td>
<td>Rare</td>
</tr>
<tr>
<td>Persons ever infected (1.6%)</td>
<td>4.1 million (3.4-4.9)*</td>
</tr>
<tr>
<td>Persons with chronic infection</td>
<td>3.1 million (2.5-3.7)*</td>
</tr>
<tr>
<td>HCV-related chronic liver disease</td>
<td>40% - 60%</td>
</tr>
<tr>
<td>Deaths from chronic disease/year</td>
<td>8,000-10,000</td>
</tr>
</tbody>
</table>

* 95% confidence interval (data from 1999-2002)

Nainan OV. Gastroenterol 2006;131:478-484

*CDC, preliminary unpublished data
Transmission of HCV

- Percutaneous
 - Injecting drug use
 - Clotting factors before viral inactivation
 - Transfusion, transplant from infected donor
 - Therapeutic (contaminated equipment, unsafe injection practices)
 - Occupational (needlestick)

- Permucosal
 - Perinatal
 - Sexual
Risk Factors For Persons with Acute or Chronic Hepatitis C 1999-2002, U.S.

Chronic (Prevalent)
- Injection Drug Use: 50%
- Transfusion: 10%
- Sexual: 20%
- Other*: 10%
- Unk: 10%

Acute (Incident)
- Injection Drug Use: 60%
- Transfusion: 10%
- Sexual: 20%
- Other*: 10%
- Unk: 10%

* Other includes occupational, nosocomial, iatrogenic, perinatal

Armstrong GL, Ann Intern Med 2006;144:705-14; CDC Sentinel Counties, unpublished data
Iatrogenic-Related Outbreaks of HCV Infections in Developed Countries

- In- and outpatient care
 - Chronic hemodialysis, surgery, endoscopy, pain management clinic, oncology clinic, in-patient ward
- Most due to unsafe injection practices, i.e., failure to use aseptic techniques
 - Contamination of multi-dose medication vials and IV solutions
 - Reuse of syringes/needles
 - Contamination of finger stick devices
- Infected HCW rarely source
 - Usually due to self-injection of patients’ narcotics

Williams IT, Clin Infect Dis 2004;38:1592-1598
Health-Care Related HCV Transmission

- Blood transfusion from unscreened donors
 - including plasma-derived products not inactivated
- Unsafe injection practices
 - inadequate sterilization of reusable needles and syringes
 - sharing of disposable needles and syringes
- Contaminated equipment
 - inadequate cleaning and disinfection
 - health care settings
 - alternative medicine practices, rituals
Global Burden of Disease Associated with Unsafe Injections

- Estimated annual incidence, 2000
 - > 20 million HBV infections
 - 30% of new infections
 - > 2 million HCV infections
 - 40% of new infections
 - > 250,000 HIV infections
 - 5% of new infections

Unsafe Injection Practices

Developing Countries
- Inadequate supplies of sterile syringes
- Inadequate sterilization of reusable syringes and needles
- Administration at home by non-professionals
- Syringes shared with others (family, neighbors)
- Overuse of therapeutic injections

Developed Countries
- Failure to use aseptic techniques
 - Reuse of same syringe and needle to administer meds to multiple patients
 - Medication preparation and blood sample handling in same area
 - Contamination of multiple dose medication vials
- Infected HCW rarely source
 - Usually due to self-injection of patients’ narcotics
Children Handling Medical Waste, Bangladesh
Hepatitis Delta Virus

- Referred to as “defective” virus
 - HDV RNA
 - surrounded by coat of HBsAg
- HDV dependent on presence of HBV to establish infection
 - requires a protein coat of HBsAg to be released from infected hepatocytes
 - HBsAg mfg by HBV
Infection with HDV

HBV-HDV Coinfection
- Simultaneous infection with HBV and HDV in a person susceptible to HBV
- Low risk of death from chronic liver disease

HBV-HDV Superinfection
- Infection with HDV in a person with chronic HBV
- High risk of severe chronic liver disease and death

Persons immune from HBV infection – either through vaccination or resolved infection – cannot become infected with HDV
Epidemiologic Features of HDV

- Transmission similar to HBV
 - Percutaneous – highly efficient
 - Sexual
 - Perinatal

- Uncommon in U.S. - seen mainly in IDU’s

- Worldwide, endemic in Amazon, Mediterranean, Central Asia, Africa
Prevention of HDV

HBV-HDV coinfection
 • Hepatitis B vaccination

HBV-HDV superinfection
 • Prevent exposure to HBV
 - screen blood for HBV (need HBV for HDV)
 • Reduce high-risk behaviors
 - safer sex practices
 - safer injection practices
Current and Future Issues

- Identification of infected persons
 - Screening and testing not routinely performed
 - Lack effective methods for reaching those whose risk was in the remote past
 - Risk factor ascertainment in routine healthcare visits is rare
- Therapy regimens less than ideal, especially those with genotype 1
 - In US, treatment offered to low % of HCV-positives
- Implications of multiple co-factors on liver disease progression and response to therapies not well understood
 - Impact likely to grow creating an even greater challenge
- Need to be alert to changes in epidemiology
Viral Hepatitis - Overview

- Primary infection of the liver caused by at least five unrelated viruses: A, B, C, D, E

- HAV and HEV
 - Fecal-oral route
 - Acute self-limited disease; no chronic infection

- HBV, HCV, HDV
 - Percutaneous or mucosal exposures to blood
 - Chronic infection – major causes of cirrhosis and hepatocellular carcinoma worldwide
Acknowledgment

- Most slides provided by Miriam J. Alter, Ph.D. University of Texas, Galveston
Geographic Differences in HCV Transmission Patterns

<table>
<thead>
<tr>
<th>Exposures among prevalent infections</th>
<th>Contribution of exposures to disease burden by HCV prevalence</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Low</td>
</tr>
<tr>
<td>Injecting drug use</td>
<td>++++</td>
</tr>
<tr>
<td>Transfusions (before testing)</td>
<td>+++</td>
</tr>
<tr>
<td>Unsafe therapeutic injections</td>
<td>+</td>
</tr>
<tr>
<td>Occupational</td>
<td>+</td>
</tr>
<tr>
<td>Perinatal</td>
<td>+</td>
</tr>
<tr>
<td>High-risk sex</td>
<td>++</td>
</tr>
</tbody>
</table>
Specific and Actionable Expectations and Objectives

- Research/Science-assist in the execution of microbiologic and clinical study plans that enhance the science and marketability of PDI products.
- Business Development-evaluate science behind new disinfection and antisepsis technologies that represent potential acquisitions or partnership opportunities for PDI.
- Consultation-respond to disinfection, antisepsis and infection prevention queries from clinical affairs, sales, marketing, and business development.
- Education-participate in national and state APIC conferences as well as other conferences/scientific meetings (e.g., APSIC, SHEA, HIS, IFIC, IDWeek, APSIC) to enhance knowledge on the infection prevention value of antisepsis and disinfection of environmental surfaces.