The Threat of Multidrug Resistant Organisms in Hospitalized Patients

Anne Lachiewicz, MD, MPH UNC Division of Infectious Diseases April 11, 2019

Overview

- 1. Antimicrobial resistance (AMR)
- 2. Drivers of AMR
- 3. Consequences/costs of AMR
- 4. Populations at risk for MDRO infections
- 5. Superbugs & super-resistance
- 6. The impact of MDRO on outcomes
- 7. Prevention of MDRO infections
- 8. Treatment of MDRO infections

1. Antimicrobial resistance

NOTE: <u>Antibacterial resistance</u> refers to when <u>antibiotics</u> become ineffective against <u>bacteria</u>

"Antibiotic resistance is perhaps the single most important infectious disease threat of our time."

-Beth Bell, MD, MPH, Director, National Center for Emerging and Zoonotic Infectious Diseases at the Centers for Disease Control⁵

Which is NOT true about antimicrobial resistance (AMR)?

- A. AMR is when microorganisms change so that the drugs typically used to treat people infected by them are no longer effective.
- B. The only people are risk for AMR are those in the hospital and those who are immunocompromised, such as chemotherapy and transplant patients.
- C. When the microorganisms become resistant to most antimicrobials they are often referred to as "superbugs".
- D. Antimicrobial resistance increases the cost of health care with lengthier stays in hospitals and more intensive care required.

Which is NOT true about antimicrobial resistance (AMR)?

B. The only people MOST are risk for AMR are those in the hospital and those who are immunocompromised, such as chemotherapy and transplant patients.

WHERE DO INFECTIONS HAPPEN?

Antibiotic-resistant infections can happen anywhere. Data show that most happen in the general community; however, most deaths related to antibiotic resistance happen in healthcare settings, such as hospitals and nursing homes. What is the earliest known antibacterial resistance?

- A. In 1940, 12 years after Flemming discovered penicillin, but 6 years before it was commercially available
- B. In 1950, after scientists discovered that adding antibiotics to chicken feed accelerated growth
- C. Genes encoding resistance to β-lactam, tetracycline and glycopeptide antibiotics have been found in specimens from 30,000 years ago

Antibacterial resistance is ancient

D'Costa et al. Nature 2011;477:457

Antibiotic resistance timeline

Antibiotic first used

Resistance first observed

Clatworthy et al. Nature Chem Biol 2007:3;541

Mechanisms of resistance

Mulvey & Simor CMAJ 2009;180:408

Numbers of unique β -lactamase enzymes identified since the introduction of the first β -lactam antibiotics

Davies & Davies. Microbiol Mol Biol Rev. 2010;74: 417

Which of the following is a key factor for emergence of AMR?

- A. Association of resistance gene(s) with mobile genetic elements
- B. Close contact between bacteria in a polymicrobial environment
- C. Selective pressure imposed by the use of antimicrobials
- D. All of the above

Horizontal gene transfer between bacteria may share resistance genes

Furuya & Lowy. Nat Rev Microbiol. 2006;4:36

Selective antibiotic pressure

3. Resistant microbe survives

4. Time 5. Resistant microbe reproduces

- Antimicrobial resistance occurs naturally
- If an antimicrobial is used when a pathogen is present, the antimicrobial resistant pathogen will have a competitive advantage over its susceptible isolates
- If the antimicrobial continues to be used, the resistant pathogens will survive, reproduce and become more common & susceptible pathogens gradually become scarcer
- Eventually, the antimicrobial becomes less effective or ineffective

Clonal dissemination of strains

Some strains disseminate that have unique survival advantages in addition to antibiotic resistance

e.g. in early 2000s, USA300 became the predominant CA-MRSA strain and was highly virulent

	HA-MRSA	CA-MRSA	
Health care contact	Yes	No	
Mean age at infection	Older	Younger	
Skin and soft tissue infections	35%	75%	
Antibiotic resistance	Many agents	Some agents	
Resistance gene	SCCmec Types I, II,III, V	SCCmec Type IV	
Strain type	USA 100 and 200	USA 300 and 400	
PVL toxin gene	Rare (5%)	Frequent (almost 100%)	

https://www.dhs.wisconsin.gov/publications/p4/p42160.pdf

Clonal dissemination of strains

Clonal dissemination of CA-MRSA strain USA300 in early 2000s

http://mrsa-research-center.bsd.uchicago.edu/our_projects.html

Predominance of ST258 *K. pneumoniae*

Kitchel et al, AAC 2009;53:3365

Patients with KPC-producing *Carbapenem-resistant Enterobacteriaceae* (CRE) reported to the Centers for Disease Control and Prevention (CDC) as of December 2017, by state

None

https://www.cdc.gov/hai/organisms/cre/trackingcre.html Accessed March 25, 2019

Reported

Bacteria that attach to a surface and grow as a biofilm are protected from killing by antibiotics

Biofilm

stages

Yang et al. FEMS Immunol Med Micro 2012;65;146

2. Drivers of antimicrobial resistance

The most important modifiable driver of antimicrobial resistance is?

- A. Human overuse or misuse
- B. Animal overuse of misuse
- C. Environmental contamination
- D. Healthcare transmission
- E. No one knows for sure but probably both misuse/overuse in humans or animals

Role of modifiable drivers towards antimicrobial resistance: a conceptual framework

Holmes et al. Lancet 2016;387:176

Drivers of resistance

Hawkey et al. JAC 2009;64:i3

Transfer of resistance genes from soil bacteria to pathogens

Forsberg et al. Science 2012;337:1107

MDR bacteria in waste water

Marathe et al. Plos One 2013;8:e77310

Antibiotic consumption in livestock

FIGURE ES-3: Antibiotic consumption in livestock, top ten countries 2010–2030 (projected for 2030) Source: Van Boeckel et al. 2015

Figure 12. Spatial distribution of overall sales of all antimicrobials for food-producing animals, in mg/PCU, for 30 countries, for 2015

PCU = population correction unit

European Surveillance of Veterinary Antimicrobial Consumption, 2017

Figure 8. Proportion of the total sales of 3rd- and 4th-generation cephalosporins, fluoroquinolones, other quinolones and polymyxins for food-producing species, in mg/PCU, for 30 European countries, in 2015^{1,2,3}

European Surveillance of Veterinary Antimicrobial Consumption, 2017

Antimicrobial use by category

₂Canadian Integrated Program for Antimicrobial Resistance Surveillance (CIPARS) Annual Report, 2009 ₅Development of a Longitudinal Antimicrobial Resistance and Antimicrobial Use Surveillance Program for the Feedlot Sector in Western Canada (BCRC 6.41)

Source: BeefResearch.ca

Human antibiotic usage

- Outpatient antibiotics
- Defined daily dose per 1,000 inhabitants per day
- 2004 data

Source: CDC.gov

0	5	10	15	20	25	30	35
GER	MANY	UDC					
LAT	VIA						
UNI	TED KIN	NGDOM					
NOF	RWAY						
SLO	VENIA						
FIN	LAND						
HUI	GARY						
SPA	IN						
Elle	OPF						
ICP	AFI			1			
ICE		-					
SLO	VAKIA		i.				
POF	TUGAL	1	Ť				
LUX	EMBOU	RG					
UNI	TED ST	ATES					
ITA	LY						
FRA	NCE	14					
GRE	ECE				1.1		

Goossens et al. CID 2007;44:1091

Antibiotic Prescriptions Dispensed in U.S. Community Pharmacies Per 1000 Population | All classes | 2015

NATIONAL

838

Antibiotic prescriptions dispensed **PER 1000 POPULATION**

Inappropriate use of antibiotics

Resistance 2016

Furuya & Lowy. Nat Rev Microbiol. 2006;4:36

3. Consequences and costs of antimicrobial resistance

Antibiotic resistance - one of the three greatest threats to human health.

,,

World Health Organisation, 2009

Resistance is global: Antibiotic resistance of Escherichia coli

% Resistant (invasive isolates)

100

The Center for Disease Dynamics Economics & Policy. ResistanceMap. 2018. https://resistancemap.cddep.org/AntibioticResistance.php

Figure 17: Spread of Antibiotic-Resistance Bacteria (ARB)

North America

- USA: ARB causes majority of 99,000 deaths/yr from infections acquired in hospitals.⁵⁶
- USA: Health care costs of ARB are US\$21-34 bn/yr.⁵⁶

South America

- Peru, Bolivia: >51% of hospital infections caused by ARB.⁵⁷
- Brazil: Rates of ARB are up >60%.⁵⁶

Europe

- EU: ARB costs society ~ €1.5 bn/yr⁵⁵ & 600 million days of lost productivity.⁶⁹
- Russia: ARB a major concern⁶⁰ with 83.6% of families imprudently use antibiotics at home.⁶¹

Middle East & North Africa

- Egypt: 38% of blood infections contracted by young cancer patients are from ARB.⁵⁵
- Israel: ARB found fatal in ~ 50% cases when resistant to our strongest antibiotics.⁶³

Sub-Saharan Africa

- Tanzania: Death rate of ARB infected children are double that of malaria.⁵⁵
- Nigeria: Rapid spread of ARB that came to Africa from Asia.⁶²

Asia

- Thailand: >140,000 ARB infections/yr and >30,000/yr patients die; 2 bn in productivity losses/yr.⁴⁹
- Japan: Extensive levels of ARB found in Tokyo's urban watershed.⁵⁰
- China: Extreme over-prescription of antibiotics⁵¹ and rapid growth rate of ARB.⁶².
- India: Within 4 years (02-06) ARB went from being resistant to 7, to 21 drugs.⁵³
- Vietnam: Farming practices contributing to spread of ARB through environmental contamination.⁵⁴
- Pakistan: 71% of infections in newborns are from ARB.⁵⁵

Antarctica

 ARB found in Antarctic animals & water samples.⁶⁴

DEATHS ATTRIBUTABLE TO AMR EVERY YEAR

O'Neil. Review on Antimicrobial Resistance 2016

CDC antibiotic resistance threats in the United States, 2013

*bacteria and fungus included in this report

Estimated minimum number of illnesses and death due to *Clostridium difficile* (*C. difficile*), a unique bacterial infection that, although not significantly resistant to the drugs used to treat it, is directly related to antibiotic use and resistance:

UUUU illnesses,

deaths

At least
Financial cost of CRE

- NDM-producing CRE outbreak in UK – 40 patients in 5 hospitals
- Total costs €1,100,000 (\$1,163,415)

Otter et al. CMI 2017;23:188

4. Populations at risk for MDRO infections

Which hospitalized patients are at least risk for MDRO infection?

- A. Patients with kidney disease on dialysis
- B. Burn ICU or complex surgery patients
- C. Organ and bone marrow transplant recipients
- D. Oncology patients on chemotherapy
- E. Pediatric patients

Commonality of risk factors

Risk Factors	Odds Ratio or Relative Risk (References)					
	Methicillin-Resistant <i>Staphylococcus aureus</i> (11, 12, 16–26)	Vancomycin-Resistant Enterococcus (27–48)	Extended-Spectrum β-Lactamase–Producing Gram-Negative Bacilli (49–57)	Clostridium difficile (58–77)		
Advanced age	1.2 to 1.3 (17, 23)	2.6 (45)	NS (49, 51, 54, 56)	1.0 to 14.1 (60, 69, 74, 77)		
Underlying disease			† (51), NS (49, 56, 57)			
Renal failure	+ (12, 17, 18, 22, 23, 26)	4.4 to 6.98 (35, 42)		1.71 to 6.7 (66, 76)		
Hematologic cancer	+ (12, 17, 23, 26), NS (22)	8.4 (33)				
Hepatic failure	† (12, 17, 23, 26)					
Severity of illness‡	1.9 (24)	2.3 to 6.1 (29, 30, 32, 47)	11.6 (53)	2.0 (63)		
Interhospital transfer of a patient; patient from a nursing home	6.9 (24)	4.1 to 2.9 (32, 45)	3.6 (52)	3.1 (66)		
Extended length of stay	1.7 to 17.5 (16–19, 21–23, 25, 26)	1.1 to 2.9 (28, 31–34, 38, 44)	1.1 to 9.0 (49, 50, 57)	1.3 to 3.6 (62, 67, 75)		

Safdar & Maki. Ann Intern Med 2002;136:834

Multidrug resistant bacterial outbreaks in burn units

Girerd-Genessay et al. J Burn Care Res. 2016;37:172

Cases, N (%)

Study	Microorganism	Outbreak Patients Duration Hospitalized, N		Colonization	Infection	Total (Attack Rate)	
Babík et al ¹³	Acinetobacter baumannii	_	73	_	_	8 (10.96)	
Bayat et al ¹¹	A. baumannii	12 mo	_	7 (54)	6 (46)	13	
Herruzo et al ²⁹	A. baumannii	1 yr	72			21 (29)	
Lyytikäinen et al ¹⁵	A. baumannii	12 mo	_		_	21	
Roberts et al ³⁰	A. baumannii	3 mo	_	1(7)	14 (93)	15	
Simor et al ¹⁹	A. baumannii	16 mo	247	13 (42)	18 (58)	31 (12.55)	
Fujioka et al ²⁶	Alcaligenes xylosoxidans	1 mo	_		2	2	
Falk et al ³⁷	Enterococcus faecium	1 yr	_	17 (81)	4 (19)	21	
Sanchez et al ²⁴	Klebsiella pneumoniae	10 mo	_	18 (69)	8 (31)	26	
Douglas et al ³¹	Pseudomonas aeruginosa	3 mo	30		4	4 (13.33)	
Hsueh et al ³²	P. aeruginosa	2 mo	16	1(25)	3 (75)	4 (25)	
Tredget et al ¹⁶	P. aeruginosa	2 yr	_		17		
Saida et al ²⁸	Providencia stuartii	3 mo	_	_	17	17	
Tsai et al ¹²	Stenotrophomona maltophilia	9 yr	666		_	13 (1.95)	
Edgar et al ²⁰	Serratia marcescens	1 mo	_			3	
Boers et al ¹⁷	MRSA	2½ yr	_	12 (71)	5 (29)	17	
Dansby et al ²⁷	MRSA	7 yr	_		_	21.9/1000 PD	
Embil et al ¹⁴	MRSA	2 mo	126	11 (92)	1(8)	12 (9.52)	
Espersen et al ³⁶	MRSA	1 mo	23		10	10 (43.48)	
Fuchs et al ¹⁰	MRSA	8 mo	43	6 (75)	2 (25)	8 (18.60)	
Hunt et al ²¹	MRSA	8 yr	_		_	56	
Lilly et al ²²	MRSA	2 yr	_	_	_	74	
Meier et al ³⁴	MRSA	4 mo		6 (60)	4(40)	10	
Patel et al ²³	MRSA	1 mo	_		4	4	
Rashid et al ⁹	MRSA	5½ mo	176	15 (83)	3 (17)	18 (10.23)	
Roberts et al ³³	MRSA	18 mo	1896	_		109 (5.75)	
Rutala et al ³⁵	MRSA	_	_	_		66 (70)	
Safdar et al ¹⁸	MRSA	5 mo	_	7	5	12 (723/1000 PD)	
Teare et al ²⁵	MRSA	16 mo	_	_	_	19	

Long term acute care facilities and ICUs

Pathogen antimicrobial agent combination

Chitnis et al. ICHE 2012;33:993

The nursing home pyramid

27,000 NH residents have antibioticresistant infections

2 out of 3 nursing home residents receive at least one course of antibiotics annually²

250,000 nursing home residents have infections³

1.6 million people live in nursing homes⁴

Most commonly treated infections in NH

Source: cdc.gov

CRACKLE Antibacterial Resistance Leadership Group

CRACKLE-II : Consortium on Resistance Against Carbapenems in *Klebsiella pneumoniae*

- 32 US sites / 79 US hospitals
- 17 States, DC, and Colombia
- 3597 projected patient admissions
- 1000 estimated isolates per year
- Additional sites planned
 - > China (n=5)
 - > Pacific (n=10)

Red Stars = Sites

Purple Stars = Central laboratories

Network: methods

- Study period 12/24/2011 until 6/30/2016
- All hospitalized patients with clinical culture positive for carbapenem-resistant *K. pneumoniae* (CRKP) were included
- RepPCR for strain typing on all available isolates
- Network analyses at the facility and individual level were performed

Network: facilities

- Skilled nursing facility
- Long term acute care
- \mathbf{x} x facilities with 1 connection

Network: individuals

- 572/724 (79%)
 people "connected"
- i.e. at least 5 days at the same facility

Endoscope-related outbreaks

EDITORIAL

Editorials represent the opinions of the authors and JAMA and not those of the American Medical Association.

Gastrointestinal Endoscopes A Need to Shift From Disinfection to Sterilization?

William A. Rutala, PhD, MPH; David J. Weber, MD, MPH

Several outbreaks featuring carbapenemase-producing Enterobacteriaceae -NDM and KPC -possibly related to elevator channel in scopes -likely "tip of the iceberg"

5. Superbugs & super-resistance

It was on a short-cut through the hospital kitchens that Albert was first approached by a member of the Antibiotic Resistance.

Which superbugs is NOT considered an urgent threat in the US?

- A. Clostridium difficile
- B. Carbapenem-resistant Enterobacteriaceae
- C. Vancomycin-resistant *Enterococcus*
- D. Drug-resistant Neisseria gonorrhoeae

Antimicrobial resistance threats in the US, 2013

Urgent Threats

- Clostridium difficile
- Carbapenem-resistant Enterobacteriaceae (CRE)
- Drug-resistant Neisseria gonorrhoeae

Serious Threats

- Multidrug-resistant Acinetobacter
- Drug-resistant Campylobacter
- Fluconazole-resistant Candida (a fungus)
- Extended spectrum β-lactamase producing Enterobacteriaceae (ESBLs)
- Vancomycin-resistant Enterococcus (VRE)
- Multidrug-resistant Pseudomonas aeruginosa
- Drug-resistant Non-typhoidal Salmonella
- Drug-resistant Salmonella Typhi
- Drug-resistant Shigella
- Methicillin-resistant Staphylococcus aureus (MRSA)
- Drug-resistant Streptococcus pneumoniae
- Drug-resistant tuberculosis

Concerning Threats

- Vancomycin-resistant Staphylococcus aureus (VRSA)
- Erythromycin-resistant Group A Streptococcus
- Clindamycin-resistant Group B Streptococcus

US antimicrobial resistance threats

Urgent

Serious

Global priority list of antibioticresistant bacteria

The WHO priority list					
PRIORITY: CRITICAL	PRIORITY 2: HIGH	PRIORITY 3: MEDIUM			
 Acinetobacter baumannii carbapenem-resistant Pseudomonas aeruginosa carbapenem-resistant, carbapenem-resistant, ESBL-producing 	 Enterococcus faecium vancomycin-resistant Staphylococcus aureus methicillin-resistant vancomycin-intermediate and resistant Helicobacter pylori clarithromycin-resistant Campylobacter spp. fluoroquinolone-resistant Salmonellae fluoroquinolone-resistant Neisseria gonorrhoeae cephalosporin-resistant fluoroquinolone-resistant 	 Streptococcus pneumoniae penicillin-non-susceptible Haemophilus influenzae ampicillin-resistant Shigella spp. fluoroquinolone-resistant 			

GLOBAL PRIORITY LIST OF ANTIBIOTIC-RESISTANT BACTERIA TO GUIDE RESEARCH, DISCOVERY, AND DEVELOPMENT OF NEW ANTIBIOTICS

Priority 1: CRITICAL[#]

Acinetobacter baumannii, carbapenem-resistant

Pseudomonas aeruginosa, carbapenem-resistant

*Enterobacteriaceae**, carbapenem-resistant, 3rd generation cephalosporin-resistant

Resistance of *Acinetobacter baumannii* to Carbapenems

The Center for Disease Dynamics Economics & Policy. ResistanceMap. 2018. https://resistancemap.cddep.org/AntibioticResistance.php

Antibiotic Resistance of *Acinetobacter baumannii* in United States

The Center for Disease Dynamics Economics & Policy. ResistanceMap. 2018. https://resistancemap.cddep.org/AntibioticResistance.php

Distribution of carbapenemase-resistant *Pseudomonas aeruginosa*

Hong et al. Infect Chemother. 2015;47:81.

Trends in resistance in Enterobacteriaceae, late 2000s

FIGURE 2

Annual rates of Enterobacteriaceae resistant to thirdgeneration cephalosporins, Spain, 1999-2010 *– Enterobacter* spp. 35.0. ---- Escherichia coli Percentage of third-generation cephalosporin-resistant infections Klebsiella pneumoniae 30.0. 25.0 20.0 15.0. 10.0 5.0 0.0 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 Year of the survey

Data from the Greek System for the Surveillance of Antimicrobial Resistance (http://www.mednet.gr/whonet)

Spain

Greece

Asensio et al. Eurosurveillance 2011;16:1 Vatopoulos. Eurosurveillance 2008;1-3:1

Carbapenem-resistant Enterobacteriaceae

TABLE 1

Enzymes conferring carbapenem resistance in Enterobacteriaceae

Enzyme	Common genetic platform	Species distribution in Enterobacteriaceae	Geographic distribution
KPC (<u>Klebsiella pneumoniae</u> <u>c</u> arbapenemase)	<i>K pneumoniae</i> sequence type 258, various plasmids types, transposon Tn4401x	<i>K pneumoniae, Escherichia coli, Enterobacter</i> species, diverse Enterobacteriaceae	Endemic in the United States, Greece, Israel, Italy, Puerto Rico, China, and South America
NDM (<u>N</u> ew <u>D</u> elhi <u>m</u> etallo-beta- lactamase)	Various plasmid types	<i>K pneumoniae</i> and <i>E coli</i> pre- dominantly, diverse Enterobac- teriaceae	Indian subcontinent and the Balkan region, and around the world
OXA-48 (<u>oxa</u> cillinase)	Incl/M-type plasmid	<i>K pneumoniae</i> predominantly, diverse Enterobacteriaceae	Southern and Western Europe, Turkey and North Africa; rare in the United States
VIM (<u>V</u> erona integron-encoded <u>m</u> etallo-beta-lactamase)	Gene cassettes in class 1 integrons	<i>K pneumoniae</i> predominantly	Common in Italy, Greece, and the Far East, sporadic globally
IMP	Gene cassettes in class 1 integrons	<i>K pneumoniae</i> predominantly	Common in the Far East and South America, spo- radic globally
SME	Chromosome	Serratia marcescens	Sporadic in North America and South America
	PASED ON INFOR	MATION IN TTOUVELEVIS IS MARKOGIANNAKIS A	DEICHOGIOLI M TASSIOS PT DAIKOS GI

BASED ON INFORMATION IN TZOUVELEKIS LS, MARKOGIANNAKIS A, PSICHOGIOU M, TASSIOS PT, DAIKOS GL. CARBAPENEMASES IN *KLEBSIELLA PNEUMONIAE* AND OTHER ENTEROBACTERIACEAE: AN EVOLVING CRISIS OF GLOBAL DIMENSIONS. CLIN MICROBIOL REV 2012; 25):682–707.

Perez & van Duin, CCJM 2013;80:225

Global Distribution of Carbapenemases in Enterobacteriaceae, by Country and Region

	IMP	KPC	NDM	OXA	VIM
Endemic/nationwide distribution	•	•	•	•	•
Significant outbreaks/ regional spread	0	0	0	0	0
Sporadic outbreak/ occurences	*	*	*	*	*

https://cddep.org/tool/global_distribution _carbapenemases_enterobacteriaceae _country_and_region/

Global Distribution of Carbapenemases in Enterobacteriaceae, by Country and Region

https://cddep.org/tool/global_ distribution_carbapenemases _enterobacteriaceae_country _and_region/

K. pneumoniae carbapenemase

- Most common carbapenemase encountered in Enterobacteriaceae
- 13 variants; KPC-2 and KPC-3 most common
- Class A serinecarbapenemase
- Hydrolyzes carbapenems, cephalosporins, penicillins, aztreonam

Ke et al. Biochem 2007;46:5732

ANTIMICROBIAL AGENTS AND CHEMOTHERAPY, Apr. 2001, p. 1151–1161 0066-4804/01/\$04.00+0 DOI: 10.1128/AAC.45.4.1151–1161.2001 Copyright © 2001, American Society for Microbiology. All Rights Reserved.

Novel Carbapenem-Hydrolyzing β-Lactamase, KPC-1, from a Carbapenem-Resistant Strain of *Klebsiella pneumoniae*

HESNA YIGIT,¹ ANNE MARIE QUEENAN,² GREGORY J. ANDERSON,¹ ANTONIO DOMENECH-SANCHEZ,³ JAMES W. BIDDLE,¹ CHRISTINE D. STEWARD,¹ SEBASTIAN ALBERTI,⁴ KAREN BUSH,² AND FRED C. TENOVER^{1*}

Hospital Infections Program, National Center for Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia 30333¹; The R. W. Johnson Pharmaceutical Research Institute, Raritan, New Jersey 08869²; and Unidad de Investigacion, Hospital Son Dureta, Andrea Doria, Palma de Mallorca, 07014,⁴ and Área de Microbiologia, Universidad de las Islas Baleares, Crtra. Valldemosa, Palma de Mallorca, 07071,³ Spain

- First report of *Klebsiella pneumoniae* carbapenemase (KPC) in US
- 1996 patient in North Carolina
- Participant in project Intensive Care Antimicrobial Resistance Epidemiology (iCARE)

Characterization of a New Metallo- β -Lactamase Gene, bla_{NDM-1} , and a Novel Erythromycin Esterase Gene Carried on a Unique Genetic Structure in *Klebsiella pneumoniae* Sequence Type 14 from India^{∇}

Dongeun Yong,^{1,2} Mark A. Toleman,² Christian G. Giske,³ Hyun S. Cho,⁴ Kristina Sundman,⁵ Kyungwon Lee,¹ and Timothy R. Walsh²*

Yonsei University College of Medicine, Research Institute of Antimicrobial Resistance, Seoul, Republic of Korea¹; Department of Medical Microbiology, Cardiff University, Cardiff, United Kingdom²; Clinical Microbiology, MTC—Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden³; Yonsei University College of Life Science and Biotechnology, Seoul, Republic of Korea⁴; and Department of Clinical Microbiology, Örebro University Hospital, Örebro, Sweden⁵

- NDM: New Delhi metallo-β-lactamase
- Zinc-containing Class B carbapenemase
- Hydrolyzes carbapenems, cephalosporins, penicillins, but not aztreonam
- First isolated from a Swede who was hospitalized in New Delhi, India

Patients with NDM-producing *Carbapenem-resistant Enterobacteriaceae* (CRE) reported to the Centers for Disease Control and Prevention (CDC) as of December 2017, by state

https://www.cdc.gov/hai/organisms/cre/trackingcre.html Accessed March 25, 2019

Dissemination of mcr-1 gene plasmid-mediated colistin resistance

Colistin- and Carbapenem-Resistant *Escherichia coli* Harboring mcr-1 and bla_{NDM-5} , Causing a Complicated Urinary Tract Infection in a Patient from the United States

José R. Mediavilla,^a Amee Patrawalla,^b Liang Chen,^a Kalyan D. Chavda,^a Barun Mathema,^c Christopher Vinnard,^a Lisa L. Dever,^d Barry N. Kreiswirth^a

Public Health Research Institute Tuberculosis Center, New Jersey Medical School, Rutgers University, Newark, New Jersey, USA^a; Division of Pulmonary and Critical Care Medicine, New Jersey Medical School, Rutgers University, Newark, New Jersey, USA^b; Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, New York, USA^c; Division of Infectious Diseases, New Jersey Medical School, Rutgers University, Newark, New Jersey, USA^d

Candida auris: A drug-resistant germ that spreads in healthcare facilities

- Candida auris is an emerging MDR yeast that can cause invasive infections & is associated with high mortality
- 1st described in 2009 in Japan, but CDC released an alert to US healthcare facilities in June 2016
- *C. auris* may acquire antibiotic resistance during treatment
- Disinfection with an EPA-registered disinfection effective against C dif spores is recommended (quaternary ammonium-based disinfectants may be insufficient)

U.S. Map: Clinical cases of *Candida auris* reported by U.S. states, as of January 31, 2019

https://www.cdc.gov/fungal/candida-auris/tracking-c-auris.html. Accessed March 25, 2019

6. The impact of multi-drug resistant organisms on patient outcomes

The impact of MDRO on outcomes

- Difficult to study
- Reports vary in their definitions of MDR
- Many confounders
- Patients with MDR-O tend to be:
 - More chronically ill
 - More acutely ill
 - Treated differently

Impact of MDR on mortality

Α	MDF	2	non-M	DR		Risk Ratio	Risk Ratio
Study or Subgroup	Events	Tota	Events	Tota	Weight	M-H, Random, 95% (CI M-H, Random, 95% CI
1.1.2 Definition >3 clas	ses						
Annunatsiri et al 2011	22	24	12	25	5.9%	1.91 [1.25, 2.92	
Cao et al 2004	24	44	11	68	4.7%	3.37 [1.84, 6.17]	
Kwa et al 2007	14	41	11	88	4.2%	2.73 [1.36, 5.49	I
Lee et al 2007	22	46	18	46	5.6%	1.22 (0.76, 1.96	1 +
Metan et al 2009	35	48	28	52	6.7%	1.35 [1.00, 1.84	
Subtotal (95% CI)		203		279	27.2%	1.84 [1.29, 2.64]	◆
Total events	117		80				
Heterogeneity: Tau ² = 0.	10; Chi ² =	11.43,	df = 4 (P	= 0.02); I ² = 65%		
Test for overall effect: Z	= 3.35 (P	= 0.000	08)				
Total (95% CI)		1320		2372	100.0%	1.75 [1.42, 2.15]	. ♦
Total events	510		441				
Heterogeneity: Tau ² = 0.	14; Chi ² =	64.72,	df= 18 (P < 0.0	0001); I ² = 3	72%	
Test for overall effect: Z	= 5.25 (P	< 0.00	001)				US C I S.U CU.U NOROM tenienA NOROM-non tenienA
Test for subgroup differe	ences: Chi	² = 0.10), df = 1 (P = 0.7	5), I² = 0%		

Vardakas et al. J Infect 2013;66;401

Outcomes in CRE infections

- BSI/pneumonia: All-cause hospital mortality 39% ("excess mortality" 27%)
- Adjusted HR 30-d mortality
 BSI 2.59 (1.52-4.50)
 - Pneumonia 3.44 (1.80-6.48)
Carbapenemase production in CRE: does it matter?

 Table 4.
 Fourteen-Day Mortality for Patients With Carbapenemase-Producing Carbapenem-Resistant Enterobacteriaceae (CP-CRE) Compared With non-CP-CRE Bacteremia

Covariate	Odds Ratio (95% CI)	<i>P</i> Value	Adjusted Odds Ratioa (95% CI)	<i>P</i> Value
Carbapenemase-producing carbapenem-resistant Enterobacteriaceae bacteremia	3.20 (1.06–9.61)	.04	4.92 (1.01–24.81)	.05
Pitt bacteremia score ≥4	9.13 (2.39–34.86)	.001	11.89 (2.38–59.30)	.005
Active empiric antibiotic therapy	.79 (0.27–2.29)	.67	2.46 (0.53–11.48)	.25
Active directed antibiotic therapy	.17 (0.04–0.72)	.01	0.10 (0.004-2.22)	.14
Days of combination antibiotic therapy	.89 (0.79–1.00)	.07	0.73 (0.59–0.93)	.01
Polymixin therapy administered	4.61 (1.16–18.3)	.03	5.57 (1.07–28.96)	.04
Diabetes	3.12 (0.99–9.84)	.05	3.42 (0.62–19.07)	.16
Immunocompromised	.45 (0.14–1.40)	.17	_	_
Carbapenem therapy administered	.82 (0.27–2.52)	.74		-
Meropenem minimum inhibitory concentration $\geq 16 \ \mu g/mL$	1.40 (0.38–5.01)	.61		

- Single center, retrospective cohort
- carbapenemase vs. non-carbapenemase producing CRE
- n=83

Tamma et al. CID 2017:64;257

Treatment of CRE

- Limited options...
- Toxicity
- Efficacy concerns
- ?combination therapy

van Duin et al. DMID 2013;75:115 Tumbarello et al. CID. 2012;55:943

Antibiotic susceptibility of KPC-KP isolates

van Duin et al. AAC 2014;58:4035

Colistin resistance in KPC-KP isolates

Rojas et al. Clin Infect Dis. 2017;64:711

7. Prevention of MDR infections

What's the best way to prevent transmission of MDR organisms?

- A. Use contact precautions when caring for patients with MDROs
- B. Cohort patients with MDROs during an outbreak
- C. Perform routine assessments of environmental surfaces and healthcare providers to track presence of MDROs
- D. Clean hands with soap and water or an alcoholbased hand rub before and after caring for every patient

Prevention: prevention of spread

Prevention: the Israel experience

- 2007: 22% K. pneumoniae R to carbapenem
- National intervention:
 - Cohorting/isolation
 - Dedicated nursing staff
 - CRE task force
 - Screening of carriers
 - Long-term care facilities
 - Hand hygiene
 - Standardized methods
 - Laboratory detection
 - Environmental cleaning

Swaber & Carmeli, Clin Infect Dis. 2013;58(5):697

Prevention: antimicrobial stewardship

Willmann. AAC 2013,57:1797

ANTIBIOTIC STEWARDSHIP PROGRAMS ARE A "WIN-WIN" FOR ALL INVOLVED

A UNIVERSITY OF MARYLAND STUDY SHOWED ONE ANTIBIOTIC STEWARDSHIP PROGRAM SAVED A TOTAL OF \$17 MILLION OVER EIGHT YEARS

ANTIBIOTIC STEWARDSHIP HELPS IMPROVE PATIENT CARE AND SHORTEN HOSPTIAL STAYS, THUS BENEFITING PATIENTS AS WELL AS HOSPITALS

https://www.cdc.gov/drugre sistance/cdc_role.html

PROMOTE ANTIBIOTIC BEST PRACTICES— A FIRST STEP IN ANTIBIOTIC STEWARDSHIP

ENSURE ALL ORDERS HAVE DOSE, DURATION, AND INDICATIONS
 GET CULTURES BEFORE STARTING ANTIBIOTICS

TAKE AN "ANTIBIOTIC TIMEOUT" REASSESSING ANTIBIOTICS AFTER 48–72 HOURS

Prevention: isolation of MDRO carriers

Harris et al.

- RTC with 26,180 patients in 20 US ICUs
- Gown/glove vs. standard of care
- MRSA acquisition decreased
- No difference in VRE acquisition
- Gown/glove led to less room entry by health care workers

Harris et al. JAMA 2013,310:1571

Prevention: isolation of MDRO carriers

Derde et al.

- 3 phases in 13 European ICUs
 - 6 mo baseline period
 - 6 mo universal chlorhexidine body-washing plus hand hygiene improvement
 - 12–15 mo cluster RCT of screening & isolation of MRSA, VRE, HRE carriers
- Improved hand hygiene + unit-wide chlorhexidine body-washing reduced acquisition of antimicrobialresistant bacteria, particularly MRSA
- Screening & isolation of carriers had no addition benefit

Prevention: treat and destroy

A COMMUNITY-BASED OUTBREAK OF INFECTION WITH PENICILLIN-RESISTANT NEISSERIA GONORRHOEAE NOT PRODUCING PENICILLINASE (CHROMOSOMALLY MEDIATED RESISTANCE)

HAWAZIN FARUKI, DR.P.H., ROBERT N. KOHMESCHER, M.S., W. PAUL MCKINNEY, M.D., AND P. FREDERICK SPARLING, M.D.

- Outbreak with PCN-R *N. gonorrhoeae*
- 372 contacts identified
- 165 contacts had PCN-R *N. gonorrhoeae* and were treated

Faruki et al. NEJM 1985,313:607

Control of Carbapenem-resistant Enterobacteriaceae, *Acinetobacter baumannii*, and *Pseudomonas aeruginosa* in Healthcare Facilities: A Systematic Review and Reanalysis of Quasi-experimental Studies

Tomczyk et al. Clin Infect Dis 2019; 68: 873–884

Control of Carbapenem-resistant Enterobacteriaceae, *Acinetobacter baumannii*, and *Pseudomonas aeruginosa* in Healthcare Facilities: A Systematic Review and Reanalysis of Quasi-experimental Studies

- Overall, multimodal IPC strategies (ie, ≥3 components implemented in an integrated way) appear to be highly effective for CRE-CRAB-CRPsA prevention and control
- Strong evidence on the role of active surveillance for infection and asymptomatic colonization was found for CRE
- Implementation of hand hygiene best practices was reported in fewer studies (only 50% ?Standard of care)
- The importance of environmental cleaning and environmental surveillance cultures was most often reported in CRAB and CRPsA studies

8. Treatment of MDR organisms

Fewer new antibiotics are available

The number of new antibiotics developed and approved has steadily decreased in the past three decades, leaving fewer options to treat resistant bacteria.

*Intervals from 1980–2009 are 5-year intervals; 2010–2012 is a 3-year interval. Drugs are limited to systemic agents. Data courtesy of FDA's Center for Drug Evaluation and Research (CDER).

https://www.cdc.gov/drugresistance/cdc_role.html

In vitro activity of new antibiotics for MDR gram-negative organisms

	ESBL-E	KPC-CRE	OXA- CRE	MBL-CRE	MDR Psa	CR-Ab	Stenotrophomonas
Ceftolozane/tazobactam	+	-	-	-	+	-	-
Ceftazidime/avibactam	+	+	+	w/ aztreonam?	+	-	w/ aztreonam?
Meropenem/vaborbactam	+	+	-	-	-	-	-
Imipenem/relebactam	+	+	-	-	+	-	-
Plazomicin	+	+	+	+/-*	+/-	-	-
Cefiderocol	+	+	+	+	+	+	+

*most NDM-producers also carry 16s rRNA methyltransferases

Summary

- MDRO are an ongoing and growing threat to hospitalized patients
- Outcomes of patients with MDRO infections likely worse vs. susceptible organisms
- Carbapenem-resistant Enterobacteriaceae especially worrisome
 - Limited treatment options
 - Poor outcomes

Questions?

anne_lachiewicz@med.unc.edu

