Management of Antibiotic-Resistant Pathogens

Zach Willis, MD, MPH
Department of Pediatrics, UNC
11/7/2019

I have no disclosures

Overview

- Introduction
 - Burden of antibiotic resistance (AR) focus on inpatient settings
 - Critical antibiotics current and under development
 - Diagnosis
- AR pathogens of epidemiologic significance
 - Gram-positive: S. aureus, Enterococcus
 - Gram-negative bacilli: ESBL, carbapenem resistance
 - Fungi: Candida spp

Learning Objectives

- Antimicrobial Resistance
 - How it develops
 - How it's detected
 - How it spreads
- Specific and emerging antimicrobial resistance problems
 - Gram-positive: MRSA, VRE
 - Gram-negative: ESBL, carbapenemases, polymyxin resistance
 - Fungal: Candida auris
- Strategies to prevent AR infections

Disclaimers

- I am not a clinical microbiologist
- There's way more than we can cover in an hour

Estimated minimum number of illnesses and deaths caused by antibiotic resistance*:

At least **2,049,442** illnesses, **23,000** deaths

*bacteria and fungus included in this report

Estimated minimum number of illnesses and death due to Clostridium difficile (C. difficile), a unique bacterial infection that, although not significantly resistant to the drugs used to treat it, is directly related to antibiotic use and resistance:

At least **250,000** illnesses **14,000** deaths

Centers for Disease Control and Prevention. *Antibiotic Resistance Threats in the United States*. 2013

Factors Contributing to Spread in Hospitals

Patient Factors:

- Severity of illness
- Immunocompromising conditions
- Medical technology and procedures (LDA, open wounds)

Infection Control:

- Increased introduction of resistant organisms from the community (and residential facilities)
- Ineffective infection control & isolation practices (esp. compliance)

Antibiotic Overuse:

- Increased use of antimicrobial prophylaxis
- Increased use of polymicrobial antimicrobial therapy
- High antimicrobial use in intensive care units

Source: Shlaes D, et al. Clin Infect Dis 1997;25:684-99.

Chart 1: Resistant Strains Spread Rapidly

Source: Centers for Disease Control and Prevention

This chart shows the increase in rates of resistance for three bacteria that are of concern to public health officials: methicillin-resistant *Staphylococcus aureus* (MRSA), vancomycin-resistant enterococci (VRE), and fluoroquinolone-resistant *Pseudomonas aeruginosa* (FQRP). These data were collected from hospital intensive care units that participate in the National Nosocomial Infections Surveillance System, a component of the CDC.

Why does this happen so fast?

- Most antibiotics are microbe-derived products
 - Penicillin: Penicillium
 - Cephalosporins: Acremonium
 - Carbapenems: Streptomyces cattleya
 - Vancomycin: Amycolatopsis orientalis
 - Also: tetracyclines, polymyxins, amphotericin B...
- Microbes have been fighting this war for billions of years
 - The genes for resistance are in the genetic pool

Principles of Antibiotic Resistance

(Levy SB. NEJM, 1998)

- 1. Given sufficient time and drug use, antibiotic resistance will emerge
- 2. Resistance is progressive, evolving from low levels through intermediate to high levels
- 3. Organisms resistant to one antibiotic are likely to become resistant to other antibiotics
- 4. Once resistance appears, it is likely to decline slowly, if at all
- 5. The use of antibiotics by any one person affects others in the extended as well as the immediate environment

How Antibiotic Resistance Happens

Lots of germs. A few are drug resistant.

Antibiotics kill bacteria causing the illness, as well as good bacteria protecting the body from infection.

X X X X X X

The drug-resistant bacteria are now allowed to grow and take over. Some bacteria give their drug-resistance to other bacteria, causing more problems.

Farm-to-Table Hospital

Care Continuum

at CHAPEL HILL

- Patients may cycle between inpatient facilities, skilled nursing facilities, and home
- AR pathogens can be acquired at any site and carried to the others
- Inadequate infection control and poor antibiotic stewardship at any one site can create problems at the others.

Broadspectrum antibiotic use

Antibiotic Resistance

CDC Four Core Activities to Fight Resistance

- 1. Prevent infections, prevent spread of resistance
- 2. Tracking
- 3. Improving antibiotic prescribing/stewardship
- 4. Developing new drugs and diagnostic tests

Antibiotic Pipeline

- 13 antibiotics approved since 2010
- Currently ~42 new antibiotics in development
 - Historically, about 1 in 5 will reach the market
- Barrier: limitations on sales
 - AR pathogens still uncommon
 - Brief courses
 - Antimicrobial stewardship
- Policy fixes:
 - GAIN Act extended patent protection for five years
 - 21st Century Cures Act reduces the FDA approval burden for high-value antibiotics

Antibiotics Approved Since 2010

Emerging AR Pathogens of Importance in US Inpatient Settings

- Enterococcus:
 - Ampicillin, vancomycin
- Staphyloccus aureus:
 - Oxacillin, clindamycin, vancomycin?
- Gram-negative enterics:
 - ESBL, CRE
- Pseudomonas, Stenotrophomonas, Acinetobacter
- Fungi:
 - Candida krusei, C. auris

ESKAPE Pathogens

Enterococcus faecium (VRE)

Staphylococcus aureus (MRSA)

Klebsiella and Escherichia coli producing ESBL

Acinetobacter baumannii

Pseudomonas aeruginosa

Enterobacteriaceace

Diagnosis of AR Pathogens

Culture

- "Gold standard"
- Requires sampling of site of infection prior to therapy
- Allows determination of antimicrobial susceptibility

PCR

- From blood, still requires an incubation step
- Rapid species identification
- Blood culture systems rapidly detect some resistance mechanisms (e.g., VRE, MRSA), but not 100%
- Direct detection of bacteria (e.g., from CSF or stool) can NOT provide resistance information

Mean Inhibitory Concentration (MIC)

- The MIC is a phenotypic test of a bacterial isolate's growth when exposed to a particular antibiotic
- The lowest concentration of the antibiotic needed to prevent the bacteria from growing
 - Expressed in mcg/mL
- Requires interpretation
 - Cannot just pick the lowest MIC from the Micro report

MIC Determination – Broth Microdilution

Sinus and Allergy Health Partnership. Otolaryngol Head Neck Surg. 2000;123(1 Pt 2):S1.

MIC Determination - Plate-Based

Susceptible

Kirby-Bauer: zone of inhibition around disc predicts susceptibility

E-test: strip with gradient antibiotic concentration

MIC Interpretation

- For EVERY (relevant) combination of species and antibiotic, there is a breakpoint established by CLSI
- Requires understanding of pharmacology of antibiotic
- The breakpoint allows interpretation as susceptibleor resistant
 - For example: MIC=1, breakpoint=4 \rightarrow susceptible
- Not all breakpoints are appropriate.
 - S. aureus vancomycin breakpoint is <=2. However, outcomes are worse if MIC=2 than if MIC<=1.

Modes of Antibiotic Therapy

Empiric

- Infection suspected
- Pathogen not yet known (may never be found)
- Cover most common possibilities
- Broad, multiple agents, more toxicity

Directed

- Infection proven, pathogen identified, susceptibility known or predicted
- Almost always single-agent
- As narrow as possible
- Almost always less toxic

Impact of Antimicrobial Resistance

- Empiric therapy may be inadequate. Delays in providing effective antibiotic therapy increase risk of mortality.
- Drugs used for antibiotic-resistant infections:
 - Usually more toxic (e.g., vancomycin vs. cefazolin)
 - Usually more expensive
 - Often less effective (e.g., vancomycin vs. cefazolin)
 - Often not available PO → increased LOS, increased central-line use
- Threat of resistance → increased use of more toxic, less effective, more expensive, IV-only drugs in patients without resistant organisms

Gram-positive AR Pathogens

Gram-positive Principles

- Antibiotic resistance is often monogenic
 - MRSA is predicted by a single gene → facilitates accurate rapid detection
- Less inter-species sharing of resistance mechanisms than Gram-negatives
- Colonization is skin and nasopharynx (Staphylococcus aureus) and GI tract (Enterococcus)

Staphylococcus aureus

- Community and nosocomial
- Infection types:
 - Skin and soft-tissue
 - Bone/joint
 - Nosocomial and postviral pneumonia
 - Wound infections
 - Bacteremia, CRBSI
 - Endocarditis/endovascular
 - Metastatic infection

Staphylococcus aureus

- Plain MSSA can be killed by most beta-lactams (nafcillin, oxacillin, cefazolin...)
 - MSSA may be just as invasive/virulent as MRSA
- Methicillin resistance is common
 - mecA gene alters the beta-lactam target (can detect by PCR)
 - Treatment: usually vancomycin
 - Options (severe infection): daptomycin, ceftaroline
 - Options (less severe): linezolid, clindamycin, doxycycline, TMP-SMX

Staphylococcus aureus

- Clindamycin resistance
 - Rising steadily over time with regional variance (high in NC)
 - Challenge in MRSA era
- Vancomycin resistance (VISA and VRSA)
 - Extremely rare (handful of cases of VRSA ever)
 - However, "MIC creep" is a well-described phenomenon in hospitals with heavy vancomycin use the most common MIC may rise from $0.5 \rightarrow 1 \rightarrow 1.5 \rightarrow 2$

MRSA Evolution

- HA-MRSA was highly antibiotic-resistant
- CA-MRSA (USA300 strain) is highly virulent
- Less distinction between the two currently

Staphylococcus aureus - Summary

- Causes a LOT of infections
 - Nosocomial and community-acquired
- Highly virulent
- We have options for dealing with MRSA
 - But usually more toxic and/or less effective than beta-lactams
 - The threat of MRSA → near-universal use of empiric vancomycin in severe acute infections
 - Can screen and isolate and decolonize patients
- VISA/VRSA are rare but can gradually be uncovered

Enterococcus faecium

- Infections:
 - UTI
 - CRBSI
 - Endocarditis
 - Wounds
- Less virulent than S.
 aureus, but difficult to
 treat

Enterococcus faecium

- Generally, enterococci are susceptible to penicillins and vancomycin
 - Tend to be hard to kill and synergistic approaches are used
- E. faecium is nearly universally resistant to ampicillin and usually resistant to vancomycin (VRE)
- Rarely encountered outside of healthcare settings
- High-risk populations (neonates, immunocompromised) can be screened with perirectal swabs

Treatment of VRE

- Vancomycin resistance encoded by genes vanA or vanB
 - Change in structure of target → complete resistance
- Daptomycin is often active
 - Requires high-dose daptomycin
- Linezolid is almost always active
- · Others: tigecycline, quinupristin-dalfopristin, telavancin

Gram-negative AR Pathogens

Gram-negative vs Gram-positive

- Both have a cell wall
- Gram-negatives have an outer membrane
- Able to regulate what comes in and out
 —
 much more complex

https://www.dreamstime.com/stock-illustration-gram-positive-gram-negative-bacteria-difference-bacterial-image45337024, accessed 5/8/2018

Gram-negative Rods – General Principles

- Genotype may not predict phenotype
- Lab phenotype may not predict clinical phenotype
- Different mechanisms interact (e.g., moderate expression of a beta-lactamase plus an efflux pump may act synergistically)
- Gram-negatives may share plasmid DNA promiscuously
- Colonize GI tract very densely

Extended-Spectrum Beta-lactamases (ESBL)

- Large heterogeneous family of enzymes
- "Extended spectrum" generally means activity against penicillins, cephalosporins (including 4th-gen), and aztreonam
- Labs may use 3rd-gen cephalosporin resistance as proxy
- NOT active against carbapenems
- Inhibited by beta-lactamase inhibitors (e.g., tazobactam)

Epidemiology of ESBL

- Frequently found in:
 - Klebsiella pneumoniae and oxytoca, E. coli
- Less commonly: Acinetobacter, Burkholderia, Citrobacter, Enterobacter, Morganella, Pseudomonas, Salmonella, Serratia, Shigella
- Plasmid-based, mobile
- In general, one single type tends to predominate in a region or hospital

ESBL – Clinical Strategies

- Often resistant to other antibiotic classes as well (aminoglycosides and fluoroquinolones)
- Beta-lactam strategies
 - Carbapenems have given the best outcomes
 - Avoid cephalosporins (even if reported susceptible)
 - For patients with ESBL bacteremia, mortality higher if treated with pip-tazo compared to meropenem (12.3% vs 3.7%)

Carbapenem Resistance

- Carbapenems are the last-line beta-lactams
- In Enterobacteriaceae (e.g., *E. coli, Klebsiella, Enterobacter*), carbapenem resistance is mediated by carbapenemases
 - CRE = Carbapenem-resistant Enterobacteriaceae
- Non-carbapenemase mechanisms: altered porins, efflux pumps
 - Less concern for healthcare epidemiology
 - Carbapenem-resistant Pseudomonas aeruginosa (CRPA)
 - Carbapenem-resistant Acinetobacter baumanii (CRAB)

Carbapenemases

- Major infection control concern
- Most are plasmid-mediated
- In general, active against all beta-lactams
- Generally not inhibited by beta-lactamase inhibitors
 - Novel BLIs can target them
- For years, no good antibiotic strategies

Resistance of *Klebsiella pneumoniae* to Carbapenems

Center for Disease Dynamics, Economics & Policy (cddep.org) © Natural Earth

Antibiotic Resistance of *Klebsiella* pneumoniae in United States

Center for Disease Dynamics, Economics & Policy (cddep.org)

Treatment

- Often have resistance to other classes (fluoroquinolones, aminoglycosides); sometimes on same plasmid
- Other options
 - Tigecycline (bad for bloodstream infections and pneumonia)
 - Polymyxins: colistin, polymyxin B (extraordinarily toxic)
 - Generally used in combination
- Newer beta-lactam combinations are a revolution

New Antibiotics for Carbapenem-Resistant Organisms

Antibiotic	Active Against	No or Limited Activity
Ceftazidime-avibactam	KPC, OXA-48	NDM, CRPA, CRAB
Meropenem-vaborbactam	KPC	OXA-48, NDM, CRPA, CRAB
Imipenem-relebactam	KPC, CRPA	NDM, OXA-48
Aztreonam-avibactam	KPC, NDM, OXA-48	CRPA, CRAB
Eravacycline	KPC, NDM, OXA-48, CRAB	CRPA

Adapted from Tamma PD and Hsu AJ, JPIDS, 2019

Polymyxin Resistance

- Colistin and Polymyxin B: last-line antibiotics for resistant Gram-negative infections
 - Abandoned in the 1970s due to toxicity, revived in 2000s
- Resistance is mediated by mcr genes
 - Plasmid-mediated (transmissible)
- Emerged in food animals in China in 2014
 - Now spread across the globe
- Colistin is commonly used in agriculture, especially in China

https://www.cdc.gov/drugresistance/biggest-threats/tracking/mcr.html

Pseudomonas aeruginosa

- Important cause of VAP (20 percent), CLABSI (18 percent),
 CAUTI, SSI
- Can accumulate multiple mechanisms of resistance
 - Often mediated at the outer membrane: porins and efflux pumps
- If *Pseudomonas* is suspected, consider double-coverage for **empiric** therapy: e.g., add tobramycin to cefepime to cover cefepime-resistant isolates
- Double-coverage is generally not recommended for targeted therapy

Acinetobacter baumanii

- Important nosocomial bacterial pathogen: VAP (8.4 percent), CLABSI,
 CAUTI, SSI
- Intrinsically resistant to many agents
- Definitions:
 - MDR: non-susceptible >= 1 agent in >= 3 categories (9 total)
 - XDR: non-susceptible to >= 1 agent all but <=2 categories</p>
 - PDR: non-susceptible to all possibly active drugs
- Resistant infections treated with polymyxins + tigecycline or minocycline

Notes from the Field

Pan-Resistant New Delhi Metallo-Beta-Lactamase-Producing *Klebsiella pneumoniae* — Washoe County, Nevada, 2016

Lei Chen, PhD¹; Randall Todd, DrPH¹; Julia Kiehlbauch, PhD^{2,3}; Maroya Walters, PhD⁴; Alexander Kallen, MD⁴

- 70 y/o F returned to Reno, NV, after prolonged stay in India, during which she was hospitalized multiple times for a femur fracture and subsequent infection.
- She presented with sepsis and a wound culture grew panresistant Klebsiella pneumoniae (intermediate to tigecycline)
- ~2 weeks after admission, she died of septic shock

Prevention of Resistant Gram-negative infections

- High-risk populations:
 - Trauma, diabetes, malignancy, organ transplantation
 - Mechanical ventilation, indwelling Foley, CVCs
 - Poor functional status, severe illness
- Strategies
 - Antibiotic stewardship
 - Contact precautions
 - During CRE outbreaks, screening for rectal colonization

Antifungal-Resistant Candida

Invasive Candidiasis

- Risk factors
 - Trauma, burns
 - Extremes of age
 - Venous catheter
 - TPN
 - Broad-spectrum antibiotic exposure
 - Renal failure
 - Abdominal surgery, GI tract perforations
 - Immunocompromise

THE UNIVERSITY
of NORTH CAROLINA

at CHAPEL HILL

Antifungal Agents

1. Triazoles

- Fluconazole fairly safe, effective against most Candida
- Voriconazole slightly broader-spectrum against Candida, lots of toxicities and challenging PK
- 2. Echinocandins (micafungin, caspofungin, anidulafungin)
 - Very broad coverage of virtually all Candida. Minimal toxicity.
- 3. Amphotericin B
 - Very broad coverage. Very toxic.

Antifungal Resistance

- C. albicans is usually fully susceptible
 - Historically the most common cause of infection
- With increasing use of antifungals, shift to more resistant species
 - C. krusei is intrinsically resistant to fluconazole
 - C. lusitaniae is usually resistant to amphotericin B
 - C. glabrata is often resistant to azoles
- Echinocandin (micafungin, caspofungin) resistance is increasingly seen

Candida auris

- Emerging Candida species
 - 799 total cases in the US (153 in 2017, 427 in 2018)
- Important concern for Infection Prevention
 - Prolonged patient colonization
 - Prolonged survival on surfaces

Candida auris - Significance

- Infections have tended to be severe
- Antifungal resistance
 - 90% are resistant to fluconazole/voriconazole
 - 30% are resistant to amphotericin B
 - 5% resistant to echinocandins
 - 2 cases of pan-resistant Candida auris in US

of NORTH CAROLINA
at CHAPEL HILL

Centers for Disease Control and Prevention

Candida auris

Centers for Disease Control and Prevention

Infection Control for Candida auris

- CDC requests immediate reporting (candidaauris@cdc.gov)
- Single-patient room, contact precautions
- Screen index patient's contacts for colonization
- Disinfection: disinfectants effective against C-diff spores

Conclusions

- 1. Antibiotic resistance continues to worsen
 - Positive feedback loops
 - Treatment remains challenging
 - Some significant antibiotic breakthroughs will improve outcomes
- 2. Populations vulnerable to antibiotic resistance continue to grow
 - Elderly, medically fragile, immunocompromised, critical illness, prolonged hospitalization
- 3. Local spread of antibiotic resistance can be significantly slowed through Infection Prevention and Antibiotic Stewardship

References

- ResistanceMap Antibiotic Resistance. https://resistancemap.cddep.org/. Accessed October 21, 2017. 1.
 Centers for Disease Control and Prevention. Antibiotic Resistance Threats in the United States, 2013. 2013: 1–114. Available at: http://www.cdc.gov/drugresistance/threat-report-2013/index.html. Accessed 25 May 2015.
- Shlaes DM, Gerding DN, John JF, et al. Society for Healthcare Epidemiology of America and Infectious Diseases Society of America Joint Committee on the Prevention of Antimicrobial Resistance: guidelines for the prevention of antimicrobial resistance in hospitals. Clin Infect Dis 1997; 25:584–599.
- IDSA: Bad Bugs, No Drugs: As Antibiotic Discovery Stagnates, a Public Health Crisis Brews. Available at: https://www.idsociety.org/Policy___Advocacy/Antimicrobial_Resistance/Bad_Bugs,_No_Drugs__As_Antibiotic_ Discovery_Stagnates,_a_Public_Health_Crisis_Brews/. Accessed 31 August 2018.
- Levy SB. Multidrug resistance--a sign of the times. N Engl J Med 1998; 338:1376–1378.
- Antibiotics Currently in Global Clinical Development. Available at: http://pew.org/1YkUFkT. Accessed 19 October 2018.

References

- Harris PNA, Tambyah PA, Lye DC, et al. Effect of Piperacillin-Tazobactam vs Meropenem on 30-Day Mortality for Patients With E coli or Klebsiella pneumoniae Bloodstream Infection and Ceftriaxone Resistance: A Randomized Clinical Trial. JAMA 2018; 320:984–994.
- Chen L. Notes from the Field: Pan-Resistant New Delhi Metallo-Beta-Lactamase-Producing Klebsiella pneumoniae Washoe County, Nevada, 2016. MMWR Morb Mortal Wkly Rep 2017; 66. Available at: https://www.cdc.gov/mmwr/volumes/66/wr/mm6601a7.htm. Accessed 14 June 2018.
- Candida auris | Candida auris | Fungal Diseases | CDC. 2018. Available at: https://www.cdc.gov/fungal/candida-auris/index.html. Accessed 19 October 2018.
- Fischer M, Long SS Prober CG. *Principles and Practice of Pediatric Infectious Diseases [Electronic Resource]*. Fifth edition. Philadelphia, PA: Elsevier; 2018.
- Bennett J, Blaser MJ, Dolin R. *Mandell, Douglas, and Bennett's Principles and Practice of Infectious Diseases [Electronic Resource]*. Updated Eighth Edition. Philadelphia, PA: Elsevier/Saunders; 2015.
- Tamma PD, Hsu AJ. Defining the Role of Novel β-Lactam Agents That Target Carbapenem-Resistant Gram-Negative Organisms. J Pediatric Infect Dis Soc **2019**; 8:251–260.

