Basic Statistics for Surveillance

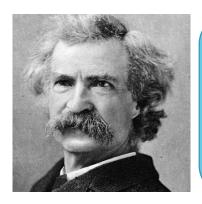
Lauren DiBiase, MS, CIC
Associate Director
Public Health Epidemiologist
Infection Prevention
UNC Hospitals

What are Statistics?

The margin of error...

17 in every 100 people...

en are at times higher risk... Numbers that describe the health of the population


1 in 9 children.

39% OF THE POPULATION...

The **science** used to interpret these numbers.

There is a statistically significant difference...

Risk of dying is 8 times higher among...

"There are 3 kinds of lies. Lies, damned lies, and statistics."

~Popularized by Mark Twain

▶ Describes the persuasive power of numbers, particularly the use of statistics, to bolster weak arguments, and the tendency of people to disparage statistics that do not support their positions.

Learning Objectives

- ✓ Describe Surveillance Data
 - Define these terms: rates, prevalence, incidence, mean, median, mode, standard deviation
- Display and Interpret Surveillance Data
 - Compare bar graphs, line graphs, pie charts and tables
 - ✓ Interpret infection data provided by NHSN
- Determine the Significance of Changes to Surveillance Data
 - Describe benchmarks (internal vs. external), create control charts, define p-values and 95% CI

Descriptive Statistics

- ▶ Measures of Rates and Ratios
 - ▶ Rate: How fast disease occurs in a population.
 - ▶ Ratio: How much disease compared to standard.
- Measures of Central Tendency
 - Central Tendency: How well the data clusters around an average value.
- Measures of Dispersion
 - Dispersion: How widely your data is spread from the average.

Absolute Measures

- ► Simplest type of measurement
- Also known as counts or frequencies
- **Example:**
 - LTC A: 25 residents with novel coronavirus
 - LTC B: 10 residents with novel coronavirus
- ▶ Is COVID19 worse at LTC A?

Relative Measures

- ▶ Includes a denominator
- Useful for comparisons
- **Examples:**
 - ▶ 16 cases of *C. difficile* out of 1000 residents
 - ▶ 1 positive *C. difficile* test out of 7 samples tested

Absolute versus Relative

Example:

Novel coronavirus among LTC facility residents

- Absolute measures
 - LTC A: 25 residents ill
 - LTC B: 10 residents ill
- Relative measures
 - LTC A: 25 ill per 100 residents = 0.25 or 25%
 - LTC B: 10 ill per 25 residents = 0.40 or 40%

What Makes a Rate?


- Numerator (top number)
 - e.g., number of infections
- 2. Denominator (bottom number)
 - e.g., number of residents [proportion]
 - e.g., number of resident-days, number of device-days [incidence density/rate]
- 3. Time Frame
 - e.g., day, week, month

Denominators

- Represent the population at risk of becoming part of the numerator
- Often, the most difficult data to obtain, but essential for comparisons
- ▶ Ideally, should incorporate time and can account for risk factors such as device use (e.g., device-days), length of stay (e.g., resident-days)

What is a Resident/Device-Day?

- =15 resident-days, device-days, etc.
- More informative than simply saying "3 residents" since accounts for each resident's time of risk

Prevalence

- Prevalence: the <u>total</u> number of cases of disease existing in a population <u>at a point in time</u>.
 - e.g., # of MRSA cases per population on March 8

Count of existing cases x constant (e.g., 100 or 1000) = Number of people at risk

Incidence

- Incidence: the number of <u>new</u> cases of disease in a population <u>over a period of time</u>.
 - e.g., # of <u>new</u> MRSA cases per population <u>during</u> March

Count of new cases x constant (e.g., 100 or 1000) Number of people at risk

Attack Rate

- Attack Rate: the number of new cases of disease out of the population at risk.
 - ▶ Related to incidence but always uses 100 as the constant, so it is expressed as a <u>percent</u>.
 - Often used for outbreaks or clusters that occur over a short period of time
 - e.g., <u>%</u> of residents with MRSA during outbreak in LTC A in March

<u>Count of new cases</u> x 100 = Number of people at risk

Example 1:

- You perform surveillance for urinary tract infections (UTIs) in your 200 resident facility.
- During the 1st quarter of the year, you identify 3 new UTIs.
- During the 1st quarter, there were 180 residents in the facility with 12,000 resident-days.

Example 1:

- In the first quarter, what was the UTI rate?
 - ► Incidence or prevalence?
 - Numerator?
 - ▶ Denominator?
 - ► Units?

Example 1: Answers

- ▶ In the first quarter, what was the UTI rate?
 - Incidence or prevalence?
 - Incidence
 - Numerator?
 - . .
 - Denominator?
 - ▶ 180 residents or 12,000 resident days
 - Units?
 - "infections per 100 residents or infections per 1000 resident days"
 - ► ANSWER: 1.7 infections per 100 residents or 0.25 infections per 1000 resident days

Example 1:

- ➤ You are concerned about the UTI rate so on April 7, you conduct a "spot check" on all of the residents of one area of the facility for a UTI.
- At that time with a census of 25, you review 20 charts and find 1 healthcare associated UTI.

Example 1:

- On April 7th, what was the UTI infection rate at the time of your spot check?
 - ► Incidence or prevalence?
 - ► Numerator?
 - ► Denominator?
 - ▶ Units?

Example 1: Answers

- In April, what was the UTI infection rate at the time of your spot check?
 - Incidence or prevalence?
 - Prevalence
 - Numerator?
 - **1**
 - Denominator?
 - ▶ 20
 - Units?
 - "prevalent infections per 100 residents on April 7th"
 - ANSWER: 5 prevalent infections per 100 residents on April 7th.

Example 1:

- You also routinely track counts of influenza-like illness in your 200 resident facility.
- During March, there is a cluster of influenza-like illness. In a short time period, 25 residents become ill and meet your case definition.
- During March, there were 180 residents in the facility with 5,000 resident-days.

Example 1:

- What is the attack rate of influenza-like illness at your facility during March?
 - ► Numerator?
 - ▶ Denominator?
 - ► Units?

Example 1: Answers

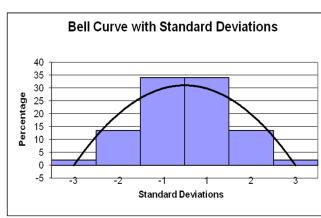
- What is the attack rate of influenzalike illness at your facility during March?
 - Numerator?
 - **>** 25
 - Denominator?
 - ▶ 180
 - Units?
 - "percentage of residents who had influenza-like illness"
 - ANSWER: 14% of residents with influenza-like illness during outbreak in March

Descriptive Statistics

- Measures of Rates and Ratios
 - ▶ Rate: How fast disease occurs in a population
 - ▶ Ratio: How much disease compared to standard
- ▶ Measures of Central Tendency
 - ► Central Tendency: How well the data clusters around an average value
- Measures of Dispersion
 - Dispersion: How widely your data is spread from the average

Measures of Central Tendency

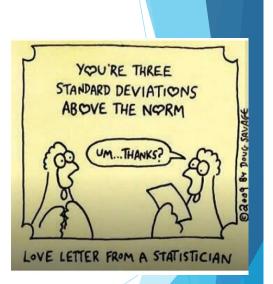
- ▶ Mean: average of a group of numbers
- Median: middle number in an ordered group of numbers
- Mode: most common value in a group of numbers


Hey diddle diddle, the median's the middle; YOU ADD AND DIVIDE FOR THE MEAN. The mode is the one that appears the most, and the range is the difference between.

Measures of Dispersion

- Range: the largest value minus the smallest value
- Standard deviation: describes the variability or dispersion in the data set tells you how spread out your data is

Standard Deviation


▶ In a normally distributed data set,

68% of values \pm 1 SD

95% of values \pm 2 SD

99% of values <u>+</u> 3 SD

Example 2:

- Your administrator is becoming concerned that compliance with hand hygiene is not as high as it needs to be
- She has asked you to provide her with some data to confirm or disprove her suspicions

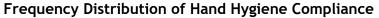
Example 2:

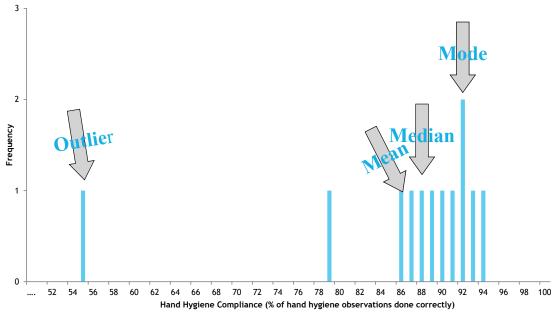
- ➤ For the past year, once a month, you have been conducting hand hygiene audits in your facility these are your monthly compliance results:
- > 55%, 92%, 86%, 94%, 91%, 89%, 79%, 93%, 92%, 88%, 87%, 90%
- You decide as a first step to calculate the mean, median, mode and range of the monthly data to help describe hand hygiene compliance at your facility

Example 2:

- ▶ What is the:
 - ► Mean?
 - ► Median?
 - Mode?
 - ► Range?

HINT: 55%, 79%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 92%, 93%, 94%

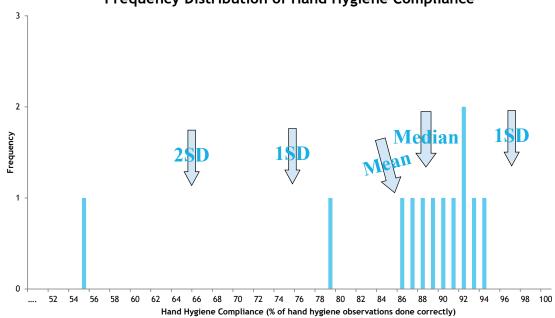

Example 2: Answers

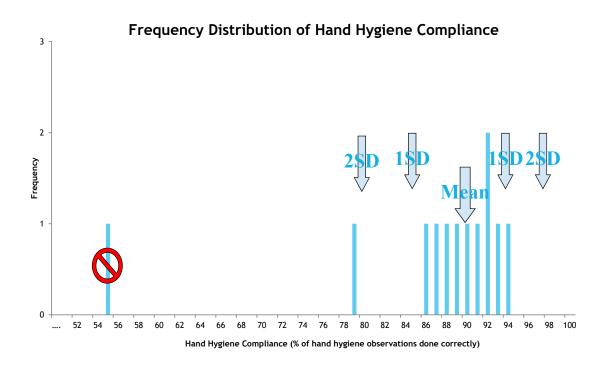

- ▶ What is the:
 - ► Mean?
 - **▶86.3**%
 - ► Median?
 - **▶89.5**%
 - ► Mode?
 - **▶92**%

- ► Range?
 - ▶39% (94%[max]-55%[min])
- Standard Deviation?

 can use programs like
 Excel to calculate
 - **▶10.2**%

Example 2: Central Tendency




*outlier: a value that falls outside the overall pattern.

Example 2: Dispersion

Frequency Distribution of Hand Hygiene Compliance

Example 2: Dispersion

Data Types

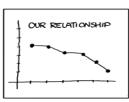
- Quantitative variables: numerical values
 - ▶ (e.g., number of infections, number of residents)
- Categorical variables: descriptive groups or categories
 - (e.g., areas of the facility, gender, occupational groups)
- Data visualization is typically a graphical representation of these two types of data that allows you to see and understand trends, outliers and patterns in data

Displaying and Interpreting Surveillance Data

- Line lists
- Graphs: a visual representation of data on a coordinate system (e.g., two axes)
- ▶ Tables: a set of data arranged in rows and columns

Line Lists

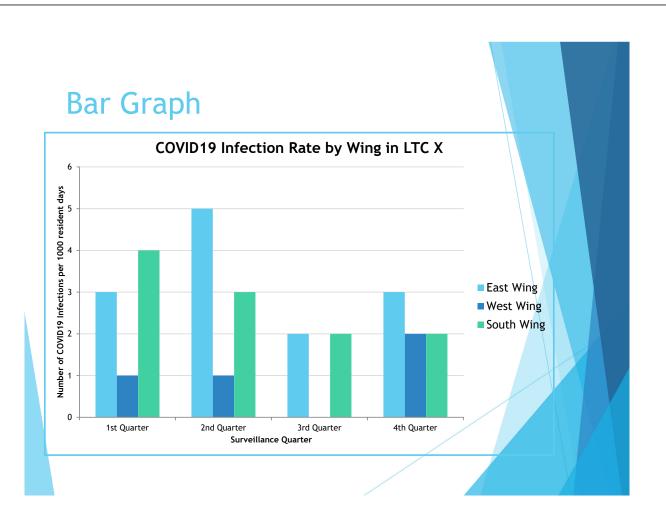
- Allow for record-level review of data
- Helpful way to standardize the data you want to routinely collect
- Helpful in pinpointing issues in data quality
- Can help inform rates or other summarized measures
- Can help identify trends

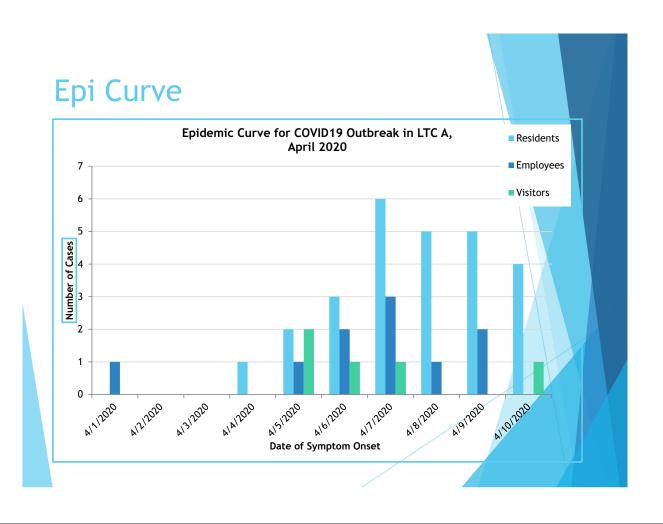

Pt#	Name	Room #	Source	Organism	Cultur e date	Antibiotic	Date
3685632	1	EW	Ucc U~Mnd	Prot mir	3-14		
		EW 322	Ucc U+M+	Prot mir			
0532210		EW 316	cellulitis			cephalexin	3-9
		EW 356	Ucc – outside doc			cephalexin	3-2
		EW 324	ucc			cephalexin	3-30
		EW 346	pneum			amox	3-10
		EW 308	ucc	ecoli			
7802490		JW 234	Ucc U~Mnd	Kleb pn.	3-6		
		JW 202	wound	stau			
		PW	eyes			tobra	3-2
3887077		PW	Ucc U~M+	ecoli	3-2		
		PW 122	Cellulitis foot			clinda	3-12
2475260		PW	Ucc U+Mnd	Ecoli, ent	3-12		
4417105		PW	Ucc U-Mnd	steno	3-22		
2259700		PW	wound	Prot mir	3-5	Ssi reported to	
7809247		PW	Ucc U+M+	ecoli	3-30		

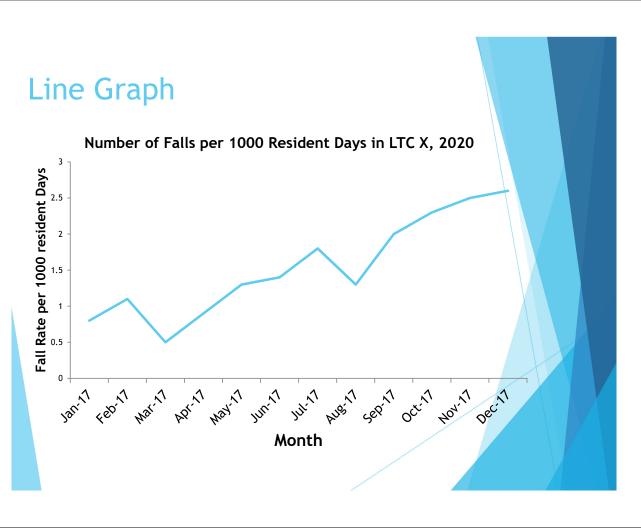
Features of Graphs and Tables

Graphs and tables should be self-explanatory!

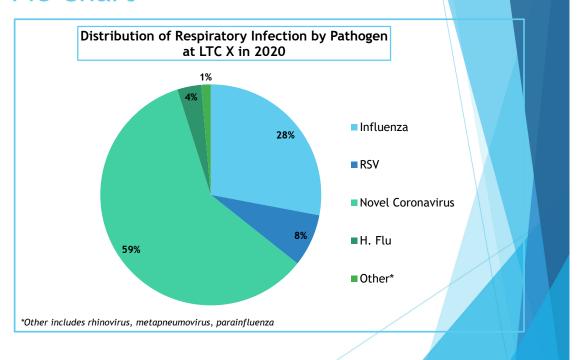
- Clear, concise title: describes person, place, time
- ▶ Informative labels: axes, rows, columns
- Appropriate intervals for axes
- Coded and labeled legends or keys
- Use footnotes to:
 - Explain codes, abbreviations, and symbols
 - Note exclusions
 - Note data source







Graph Types


- ► Bar Graphs
 - E.g., Histograms (shown in previous example)
 - ► E.g., Comparison between categories
 - ▶ E.g., Epidemic Curves
- Line Graphs
 - ▶ E.g., To show trends over time
- ▶ Pie Charts
 - ► E.g., As a percentage of a whole


Pie Chart

Tables

Number of UTIs by Age Group, LTC X, 2015					
Age Group (Years)	Number of Cases				
<50	0				
51-60	2				
61-70	7				
71-80	6				
81-90	3				
>90	1				
Total	19				

What's wrong with this graph?

- Missing a chart title
- Missing axis labels on the x and y axis
- The y axis starts at 5 (should start at 0)
- No explanation of abbreviations used in the legend

Interpreting Surveillance Data

THINGS GOT REALLY INTERESTING WHEN THE STATISTICIAN STARTED DOING WARD ROUNDS

Why Analyze your Data?

- Provide feedback to internal stakeholders
- Analyzing data can help you identify areas that need improvement
- Reports can help inform prioritization and success of prevention activities
- At the end of the day, these are YOUR data you should know your data better than anyone else

Checklist

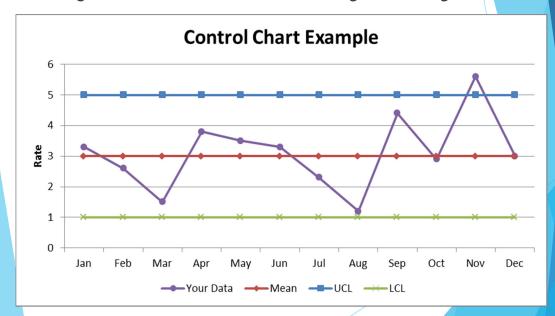
- Before you begin analyzing your data, ask yourself these questions:
 - What data are you analyzing?
 - ▶ What is the time period of interest?
 - Why are you analyzing these data?
 - Who is the audience/stakeholders (and what do they want to see)?
 - Other IPs
 - Managers
 - Physicians
 - Administrative

Data Analysis: Interpreting the Results

- Examine trends over time
 - Assess patterns to determine temporality
 - Identify acute or unusual events which require immediate follow-up
- Assess which risk groups are being most affected - allows you to target your prevention efforts

Determine the Significance of your data - How?

- ▶ Practical/Clinical Significance vs. Statistical Significance
- Make comparisons
 - For example: over time, to other areas of facility, to other facilities (NHSN data)
 - Remember to choose appropriate data for comparison (i.e., same denominator units)
- Apply a type of statistical test
 - e.g., control charts (for time trends) is there special cause variation?
- Other statistical tests and measures
 - P-values
 - 95% confidence intervals


Internal Benchmarks

- Compare current results to your own prior results
- Best way to chart your own progress over time
 - ► Select feasible and stretch goals
- Note when interventions took place
- Use when there is no external benchmark

Control Charts

► Tool to help determine when infection rates are out of range -user sets control limits. How high is TOO high?

Control Chart Example 3:

MONTH	2020 UTI Rate	Moving Range
JAN	4.5	
FEB	3.2	1.3
MAR	3.6	0.4
APR	3.5	
MAY	3.0	
JUNE	4.0	
JULY	4.1	
AUG	4.6	
SEPT	4.8	
OCT	5.2	
NOV	5.7	
DEC	6.5	

- Find the mean of the UTI rates for the last year
- 2. Calculate the moving ranges (subtract month 1 from 2, month 2 from 3...) and take absolute values (no negative values)
- 3. Calculate the mean of the moving ranges

Control Chart Example 3 Answers

MONTH	2020 UTI Rate	Moving Range		
JAN	4.5			
FEB	3.2	1.3		
MAR	3.6	0.4		
APR	3.5	0.1		
MAY	3.0	0.5		
JUNE	4.0	1.0		
JULY	4.1	0.1		
AUG	4.6	0.5		
SEPT	4.8	0.2		
OCT	5.2	0.4		
NOV	5.7	0.5		
DEC	6.5	0.8		

► Find the mean of the UTI rates.

=4.4

Calculate the moving ranges

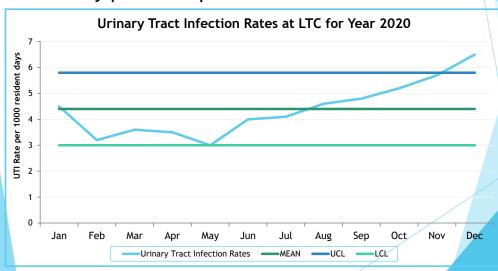
See table

► Calculate the mean of the moving ranges.

=0.5

Control Chart Example 3:

- Calculate Upper Control limit= Mean + (2.66 x Mean of Moving Range)
- Calculate Lower Control limit= Mean -(2.66 x Mean of Moving Range)


In this example:

$$UCL = 4.4 + (2.66 \times 0.5) = 5.8$$

$$LCL = 4.4 - (2.66 \times 0.5) = 3.0$$

Control Chart Example 3:

- Draw horizontal lines at the mean, UCL and LCL based on your historical data
- Then graph your current data and use the limits to identify potential problems.

NHSN Long-term Care Facility Component early reporting experience: January 2013-December 2015

Infection Data					Percentile				
Type of Infections	No. Location	No. of Infections	Resident Days	Pooled Mean	10%	25%	25% 50% (median)		90%
UTI	112	2013	3,429,240	0.59	0.00	0.00	0.29	0.81	1.15
C. difficile	146	667	6,287,414	0.98	0.0	0.00	0.70	1.86	5.62
MRSA	84	206	2,161,396	0.10	0.0	0.00	0.01	0.10	0.24

https://www.ajicjournal.org/article/S0196-6553(18)30004-X/fulltext

- What is the pooled mean UTI rate reported for this time period?
 0.59 UTIs per 1000 resident days
- If your facility has a rate of 1.6 C. difficile infections per 1000 residents days—between what percentiles is it compared to the national data? Between the 50th-75th percentiles
- If your facility has a rate of 1.0 MRSA infections per 1000 resident days—between what percentiles is it compared to the national data? Greater than the 90th percentile

Interpretation of Other Statistical Tests (more advanced topic)

Consider your calculated infection rate to be an estimation of the true rate.

Why an estimation?

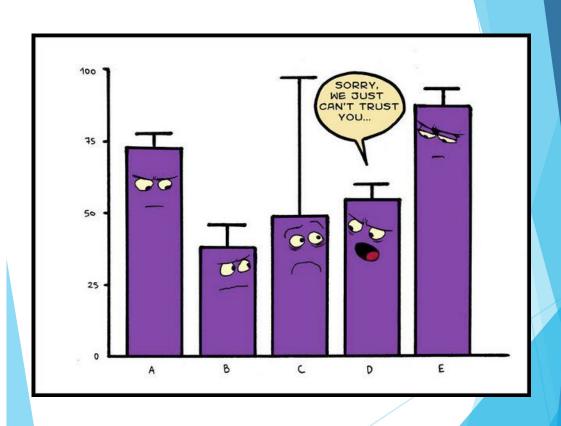
- ➤ You may only do surveillance on a <u>sample</u> of residents in your facility.
- ▶ If surveillance activities were repeated by other ICPs, your numerators may <u>vary slightly</u> based on interpretation of case definitions, available clinical information in the chart, etc.

Hypotheses

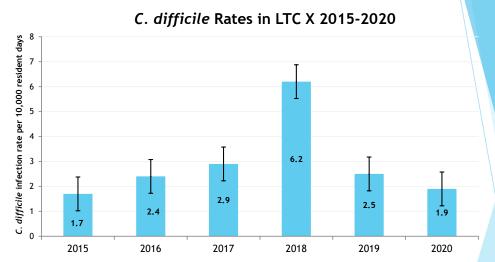
- ► Null hypothesis: values are equal
- ► Alternative hypothesis: values differ
- ▶ These statements are mutually exclusive
 - ► They cover all possible outcomes
 - In the end, only one can be selected

p=value: the probability that the observed difference (or a more extreme one) was caused by random chance if the null hypothesis was true.

Other Statistical Tests: P Value



- Probability that the difference does not reflect a true difference and is only due to chance
- e.g., p=0.05 means that 95 out of 100 times your estimate is truly significant (and <u>not</u> due to chance)
- Generally a level of P<0.05 is considered "statistically significant"



Other Statistical Tests: 95% Confidence Interval

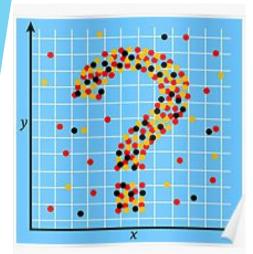
- Means that you are 95% confident that the *true* average value lies within this interval
- Confidence interval size:
 - ▶ Wide: less confident with that estimate
 - Narrow: more confident with that estimate
- ► For comparisons:
 - Overlapping intervals suggest no significant difference
 - ▶ Non-overlapping intervals suggest significant differences

95% Confidence Interval Example:

Is the C. difficile infection rate at this LTC in 2018 statistically significantly different than the C. difficile infection rate in other years?

YES - the 95% CI do not overlap

Is the C. difficile infection rate at this LTC in 2020 statistically significantly different than the rate in 2019?


NO- the 95% CI overlap

Learning Objectives

- ✓ Describe Surveillance Data
 - Define these terms: rates, prevalence, incidence, mean, median, mode, standard deviation
- Display and Interpret Surveillance Data
 - Compare bar graphs, line graphs, pie charts and tables
 - ✓ Interpret infection data provided by NHSN
- Determine the Significance of Changes to Surveillance Data
 - Describe benchmarks (internal vs. external), create control charts, define p-values and 95% CI

"The world cannot be understood without numbers. But the world cannot be understood with numbers alone."

-Hans Rosling

Thank you!

Online Excel Resources

www.excel-easy.com

https://excelexposure.com/

https://www.thoughtco.com/excelformulas-step-by-step-tutorial-3123636

https://www.gcflearnfree.org/excel2016/
sorting-data/1/