CONFLICT OF INTEREST DISCLOSURES

- The views and opinions expressed in this series are those of the speakers and do not reflect the official policy or position of any agency of the US or NC government or UNC.

- Our speakers have the following financial relationships with the manufacturer(s) and/or provider(s) of commercial services discussed in this activity:
 - Dr. Kistler served as a consultant for Base10, Inc on their UTI embedded clinical support tool and received funding from Pfizer to study pneumococcal carriage.
 - Dr. Willis has performed contracted research with: Pfizer (pediatric nirmatrelvir-ritonavir and maternal RSV vaccine), Novavax (pediatric COVID-19 vaccine), and Merck (monoclonal antibody for RSV prevention)
 - Ms. Doughman owns individual Gilead stock.

- The speakers do not intend to discuss an unapproved/investigative use of a commercial product/device in this series, and all COI have been mitigated.

- These slides contain materials from a variety of colleagues, as well as the CDC, WHO, AHRQ, etc.
INTRODUCTIONS

Please put your name, hospital, and location in the chat!
OUTLINE OF TODAY’S SESSION

- Housekeeping
- Review from last session
- CDC Core Element #4: Concluding discussion
- CDC Core Elements #5: Tracking to support stewardship
- Discussion and "Homework"
CME AND CE CREDIT

- CME & CE for participants
 - Attendance and active participation per learning session
 - Click the link in the chat during the session to document your attendance
 - Complete surveys as requested
ASSIGNMENT FROM LAST SESSION

- What’s the status of patient-specific ASP strategies (preauthorization and prospective audit) in your facility?

- Are these activities optimized?
 - Do restricted antimicrobials sometimes get through?
 - Do you have enough IT support and personnel for prospective audit?
CORE ELEMENT #4: **ACTION**

"**IMPLEMENT INTERVENTIONS… TO IMPROVE ANTIBIOTIC USE**"

<table>
<thead>
<tr>
<th>Patient-specific</th>
<th>System wide</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prospective audit and feedback*</td>
<td>Facility-specific treatment guidelines*</td>
</tr>
<tr>
<td>-Bug-drug mismatch/de-escalation</td>
<td>Promote routine individual antibiotic process review i.e. “time out”</td>
</tr>
<tr>
<td>-Drug specific monitoring</td>
<td>Clinical decision support systems</td>
</tr>
<tr>
<td>-Disease-specific monitoring</td>
<td>Cumulative susceptibility report (antibiogram)</td>
</tr>
<tr>
<td>-Optimize route of administration</td>
<td>Drug/Disease state treatment review</td>
</tr>
<tr>
<td>-Duration of therapy</td>
<td>Formulary Management, shortage management</td>
</tr>
<tr>
<td>Optimize antimicrobials for next level of care</td>
<td>Antimicrobial dosing recs</td>
</tr>
<tr>
<td>Preauthorization of certain drugs/classes*</td>
<td>Micro lab output optimization strategies, diagnostic stewardship</td>
</tr>
</tbody>
</table>

Examples, list not all-inclusive

* CDC “priority” interventions, TJC Elements of Performance, 2023
What facility-wide strategies do you have in place (or have you tried) to facilitate antimicrobial decision-making?

What did you learn as you implemented these? How did you learn this?

What one or two facility-wide stewardship strategies do you envision implementing at your facility?

System-wide strategies to improve antimicrobial use

<table>
<thead>
<tr>
<th>Facility-specific treatment guidelines*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Promote routine individual antibiotic process review i.e. “time out”</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Clinical decision support systems</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cumulative susceptibility report (antibiogram)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Drug / Disease state treatment review</th>
</tr>
</thead>
<tbody>
<tr>
<td>Formulary Management, shortage management</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Antimicrobial dosing recs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Micro lab output optimization strategies, diagnostic stewardship</td>
</tr>
</tbody>
</table>
CONDITION-SPECIFIC GUIDELINES

➤ Focus on microbiologic diagnosis
 ➤ 2 peripheral blood cultures for sepsis
 ➤ Bone biopsy for decubitus ulcers with suspected osteomyelitis

➤ Rational empiric therapy
 ➤ Once it starts, it can be hard to change ("but they got better on vanc and pip-tazo!")
 ➤ Incorporate antibiogram data

➤ Targeting therapy, de-escalation, duration
PRIORITIZING CONDITIONS

A good target condition:
- Relatively frequent
- Broad-spectrum antibiotics often used and/or diagnostic criteria vague
- Unjustifiable variance
- Guidelines available from a reputable source (ATS, IDSA, etc)

Must have stakeholder buy-in
- “Make it easy to do the right thing”
BENEFITS OF CONDITION-SPECIFIC GUIDELINES

<table>
<thead>
<tr>
<th>Challenge to Address</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>Excess variance in decision-making</td>
<td>Sepsis: speed is the priority</td>
</tr>
<tr>
<td>Inadequate diagnostic samples</td>
<td>Obtaining bone biopsies for deep decubitus ulcers</td>
</tr>
<tr>
<td>Overuse of Low-Specificity Cultures</td>
<td>Diagnostic stewardship of ICU respiratory cultures</td>
</tr>
<tr>
<td>Difficulty coordinating subspecialists</td>
<td>Diabetic foot infections</td>
</tr>
<tr>
<td>Overuse of high-value drugs</td>
<td>C-diff guidelines with fidaxomicin positioning</td>
</tr>
<tr>
<td>Targeting antibiotics and duration</td>
<td>Pretty much everything!</td>
</tr>
</tbody>
</table>
CORE ELEMENT #5: TRACKING

- Monitor antibiotic prescribing, impact of interventions, and other important outcomes, like *C. difficile* infections and resistance patterns.

- **Antibiotic Use Measures**
 - NHSN Antibiotic Utilization (AU) Reporting

- **Outcome measures**
 - *C. difficile* infections
 - Antimicrobial resistance (AR)
 - Financial Impact

- **Process Measures for quality improvement**
 - Do our AS processes work? How often? To what effect?
NHSN AU & AR MODULES

- Creates a centralized, standardized institutional database
 - Antimicrobial use data
 - Pathogen resistance data
 - Patient demographic data
- Utilizes pre-built analysis tools
 - Local analysis
 - Indices for benchmarking across institutions
- AU & AR are together termed “AUR” in CDC/NHSN documents

https://www.cdc.gov/nhsn/psc/aur/
CMS GOAL: REQUIRING AUR MEASURE WILL ENABLE THE DEVELOPMENT OF A TRUE NATIONAL PICTURE OF THE THREAT POSED BY ANTIMICROBIAL OVERUSE AND RESISTANCE

• Requiring AUR reporting through CDC’s NHSN would produce inpatient benchmarks that can be used to guide clinical and public health action.

• The extensive voluntary participation in NHSN’s AUR surveillance indicates that thousands of hospitals see value in NHSN’s AUR surveillance. However, incomplete participation in NHSN’s AUR surveillance limits the generalizability of the AUR data.

• The benefits of monitoring AUR data for patient care and public health are most likely to be achieved when data collection and analysis are systematic, standardized, and achieve complete coverage across eligible facilities.

AUR = Antibiotic Use and Resistance
ANTIMICROBIAL USE MEASURES

NUMERATOR
- Usually derived from EHR
- Purchasing data
- Doses administered
- Grams administered (Defined Daily Doses)
- Days on therapy
- NHSN: “Antimicrobial day”

DENOMINATOR
- Usually derived from ADT data
- Patient days
- Per admissions (NHSN secondary option)
- NHSN: “days present”

Rate of Antimicrobial Days per 1,000 Days Present

\[
\frac{\text{Drug specific antimicrobial days per patient care location per month}}{\text{Days present per patient care location per month}} \times 1000
\]
NHSN AU REQUIREMENT: ANALYSIS TOOLBOX

- NHSN includes a powerful analysis engine. Once you have uploaded data, analyzing doesn’t require further input from your local IT department, just a bit of training in the use of NHSN software.

- Two sample analysis indices:
 - SAAR: Standardized Antimicrobial Administration Ratio (SAAR), a metric developed by CDC to analyze and report antimicrobial use data in summary form. Predicted Antimicrobial use is a benchmark index generated by NHSN.

 \[
 (AU-CAD) = \text{Antimicrobial Use Cumulative Attributable Difference}
 \]

 The AU-CAD represents the difference between the observed days and a selected Standardized Antimicrobial Administration Ratio (SAAR) target.

 \[
 \text{SAAR} = \frac{\text{Observed Antimicrobial Use}}{\text{Predicted Antimicrobial Use}}
 \]

- Training is readily available in the use of the toolbox

ANTIBIOTIC RESISTANCE REQUIREMENT (AR)

- An analysis platform that uses monthly uploaded:
 - Microbiology Lab data via institution Laboratory Information System (LIS)
 - Patient volume data from institution ADT system
 - Some pre-upload processing of data is required (e.g. removal of duplicate positive isolates, adjustment for selective or cascaded reporting)

- Platform includes tools for development of:
 - Pathogen susceptibility rates, by location
 - Multiple antibiogram subsets
 - Benchmarking reports using a “predicted” susceptibility rate
NEW IN 2023: REVISIONS TO ACTIVE ENGAGEMENT

Starting in 2023, CMS is reducing active engagement to two options:

1. Pre-production and Validation (a combination of registration to submit data and testing/validation)

2. Validated Data Production
 - The hospital must now specify their level of active engagement for each public health measure and can only stay in pre-production and validation for 1 year.
 - The ask is that starting in 2024 accredited hospitals complete AUR reporting in NSHN and have a report saved from NSHN in case of audit.
 - Hospitals must be testing the data in 2024 or actively sending the data.
 - Hospitals only need to save the report for 1 self-selected quarter.
 - Hospitals are required to save the documentation for 7 years following the reporting year.
BRIEF EXAMPLES OF AU DATA USE
ANTIFUNGAL USE IN AN ICU – SAAR DATA

The graph shows the SAAR values over time, with a vertical dashed line indicating the intervention. The values range from 0.00 to 5.00, and the time periods are marked from 2020Q3 to 2023Q1.
INDIVIDUAL BREAKOUTS, DOT/1000 DATA

Slide courtesy of Lindsay Daniels, PharmD, UNC Medical Center
“HOMEWORK”

- Come to session #4 prepared to share an example from your institution where you used reported data to make a change in the antimicrobial use process.

- Did you track the effects of the change? If so, what were the effects you observed?
THE NORTH CAROLINA CLINICAL ANTIBIOTIC STEWARDSHIP PARTNERS (NC CLASP)

- All the information from today’s session will be on our website https://spice.unc.edu/ncclasp/