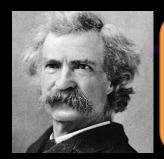
Making the Most of Your Surveillance Data:

Biostatistics for Infection Control

Emily Sickbert-Bennett, PhD, MS, CIC, FSHEA


Director of Infection Prevention, UNC Medical Center Professor of Medicine-Infectious Diseases,

UNC School of Medicine

Associate Professor of Epidemiology, Gillings School of Global Public Health

1

Statistics The margin of error... 17 in every 100 people... Numbers that describe Men are at 3 times higher the health of the population 1 in 9 children... **39% OF THE** The **science** used to **POPULATION...** interpret these numbers. Risk of dying is 8 times significant higher among...

"There are 3 kinds of lies. Lies, damned lies, and statistics."

~Popularized by Mark Twain

• Describes the persuasive power of numbers, particularly the use of statistics, to bolster weak arguments, and the tendency of people to disparage statistics that do not support their positions.

3

Outline

- Describe Surveillance Data
- Display and Interpret Surveillance Data
- Determine the Significance of Changes to Surveillance Data

Δ

Describing Surveillance Data Using Descriptive Statistics

5

Absolute Measures

- Simplest type of measurement
- Also known as counts
- Example:
 - Hospital A: 25 patients with norovirus
 - Hospital B: 10 patients with norovirus
- Is norovirus worse at Hospital A?

Relative Measures

- Includes a denominator
- Useful for comparisons
- Examples:
 - − 16 cases of *C. difficile* out of 1000 patients
 - − 1 positive *C. difficile* test out of 7 samples tested

7

Absolute versus Relative

Example: Norovirus activity at different hospitals

- Absolute measures
 - Hospital A: 25 patients ill
 - Hospital B: 10 patients ill
- Relative measures
 - Hospital A: 25 ill per 1000 patients = 0.025 or 2.5%
 - Hospital B: 10 ill per 250 patients = 0.040 or 4%

Descriptive Statistics

- Measures of Rates and Ratios
 - Rate: How fast disease occurs in a population.
 - Ratio: How much disease compared to standard.
- Measures of Central Tendency
 - Central Tendency: How well the data clusters around an average value.
- Measures of Dispersion (Variability)
 - Dispersion: How widely your data is spread from the average.

9

What Makes a Rate?

- 1. Numerator (top number)
 - e.g., number of infections
- 2. Denominator (bottom number)
 - e.g., number of patients [proportion]
 - e.g., number of patient-days, number of device-days [incidence density/rate]
- 3. Time Frame
 - e.g., day, week, month

Denominators

- Represent the population at risk of becoming part of the numerator
- Often, the most difficult data to obtain, but essential for comparisons
- Ideally, should incorporate time and can account for risk factors such as device use (e.g., devicedays), length of stay (e.g., patient-days)

11

• Strategies: e.g., count how many at 9 am

Rate Measures

- Prevalence
- Incidence
- Attack Rate

13

Prevalence

- Prevalence: the <u>total</u> number of cases of disease existing in a population <u>at a point in</u> time.
 - e.g., # of MRSA cases per population \underline{on} March 8

<u>Count of existing cases</u> x constant (e.g., 100 or 1000) = Number of people at risk

Incidence

- Incidence: the number of <u>new</u> cases of disease in a population <u>over a period of</u> time.
 - e.g., # of <u>new</u> MRSA cases per population <u>during</u> March

```
<u>Count of new cases</u> x constant (e.g., 100 or 1000) = Number of people at risk
```

15

Attack Rate

- Attack Rate: the number of <u>new</u> cases of disease out of the population at risk.
 - Related to incidence but always uses 100 as the constant, so it is expressed as a <u>percent</u>.
 - Often used for outbreaks or clusters that occur over a short period of time
 - e.g., <u>%</u> of patients with MRSA during outbreak in Med ICU in March

<u>Count of new cases</u> x 100 = Number of people at risk

- You perform HAI surveillance for ventilator associated pneumonias (VAP) and central line associated bloodstream infections (CLABSI) in your 12 bed intensive care unit.
- In March, you identify 2 new VAPs, 4 new CLABSIs and 3 new respiratory infections (not ventilator associated).

17

Example 1:

- The admitting department tells you that in March there were 89 patients in the unit with 311 patient-days.
- Respiratory care tells you that they provided 162 ventilator-days of care to 47 patients in March.
- You count the central line-days and find 284 line-days in 84 patients in March.

- In March, what was the VAP rate?
 - Incidence or prevalence?
 - Numerator?
 - Denominator?
 - Units?

19

Example 1: Answers

- In March, what was the VAP rate?
 - Incidence or prevalence?
 - Incidence
 - Numerator?
 - •
 - Denominator?
 - 162 or 47
 - Units?
 - "infections per 1000 ventilator-days" or "infections per 100 ventilated patients during March"
 - ANSWER: 12.3 infections per 1000 ventilator-days;
 4.3 infections per 100 ventilated patients during March.

- In March, what was the CLA-BSI rate?
 - Incidence or prevalence?
 - Numerator?
 - Denominator?
 - Units?

21

Example 1: Answers

- In March, what was the CLA-BSI rate?
 - Incidence or prevalence?
 - Incidence
 - Numerator?
 - 4
 - Denominator?
 - 284 or 84
 - Units?
 - "infections per 1000 central line-days" or "infections per 100 patients with central lines during March"
 - ANSWER: 14.1 infections per 1000 central linedays or 4.8 infections per 100 patients with central lines during March

- In March, what was overall infection rate?
 - Incidence or prevalence?
 - Numerator?
 - Denominator?
 - Units?

23

Example 1: Answers

- In March, what was overall infection rate?
 - Incidence or prevalence?
 - Incidence
 - Numerator?
 - •
 - Denominator?
 - 311 or 89
 - Units?
 - "infections per 1000 patient-days" or "infections per 100 patients during March"
 - ANSWER: 28.9 infections per 1000 patient-days or 10.1 infections per 100 patients during March

- On April 7, you were worried about the BSI rate so you return to the unit to do a "spot check" on all of the patients for a BSI.
- At that time with a census of 12, you reviewed 11 charts and found 1 healthcare associated BSI.

25

Example 1:

- On April 7th, what was the BSI infection rate at the time of your spot check?
 - Incidence or prevalence?
 - Numerator?
 - Denominator?
 - Units?

Example 1: Answers

- In April, what was the BSI infection rate at the time of your spot check?
 - Incidence or prevalence?
 - Prevalence
 - Numerator?
 - .
 - Denominator?
 - 11
 - Units?
 - "prevalent infections per 100 patients on April 7th"
 - ANSWER: 9 prevalent infections per 100 patients on April 7th.

27

What Makes a Standardized Infection Ratio (SIR)?

- 1. Numerator (top number)
 - =number of observed infections
- 2. Denominator (bottom number)
 - =number of expected or predicted infections
 - Number of predicted infections = calculated based on your hospital's number of procedures, device days, risk factors, nursing units compared to a standard infection rate (e.g., historical data, state data, national data)

Predicted Number of Infections

- 2015 as baseline year
- Logistic regression/negative binomial regression
- Limited patient level risk adjustment
 - facility type, bed size, med school affiliation, types of units.

Details:

https://www.cdc.gov/nhsn/pdfs/ps-analysis-resources/nhsn-sir-guide.pdf

29

Standardized Infection Ratio

- SIR = # observed infections # predicted infections
- SIR >1.0 \rightarrow more infections than predicted
- SIR <1.0 \rightarrow fewer infections than predicted
- ~LOWER SIRs are BETTER~

SIR Interpretations

- SIR=1
- The number of infections is the same as the number of expected infections
- No progress has been made in reducing infections since the baseline period or compared to another standard population (e.g., all NC, all US).

31

SIR Interpretations

- If the SIR is less than 1
 - Fewer infections than predicted based on standard or baseline data
 - Infection reduction/prevention compared to standard or baseline data
 - 1 minus the SIR = percent reduction:
 For example, a SIR of 0.80 means that there was a 20 percent reduction from the standard population or baseline time period

SIR Interpretations

- If the SIR is greater than 1
 - More infections than predicted based on standard or baseline data
 - Infections are increased compared to standard or baseline data
 - SIR minus 1 = percent increase:
 For example, a SIR of 1.25 means that there was a
 25 percent increase from the standard population or baseline time period

33

Example 1: SIR

- CLABSI rate = 4 CLABSI/284 line days
- Predicted Infections = 0.57
- What is the SIR?
- How would you explain the SIR to your administrator?

Example 1 SIR: Answers

- CLABSI rate = 4 CLABSI/284 line days
- Predicted Infections = 0.57
- What is the SIR?
 - SIR = 4 CLABSIs observed/0.57 CLABSIs predicted
 - SIR=7.02
- How would you explain this SIR to your administrator?
 - We observed more (7 times) CLABSIs than predicted based on comparison to a standard rate*
 - *state the source of standard rate, NHSN? which years?

35

Descriptive Statistics

- Measures of Rates
 - Rate: How fast disease occurs in a population.
 - Ratio: How much disease compared to standard
- Measures of Central Tendency
 - Central Tendency: How well the data clusters around an average value.
- Measures of Dispersion (Variability)
 - Dispersion: How widely your data is spread from the average.

Measures of Central Tendency

- Mean: average of a group of numbers
- **Median:** middle number in an ordered group of numbers
- Mode: most common value in a group of numbers

Hey diddle diddle, the median's the middle; YOU ADD AND DIVIDE FOR THE MEAN. The mode is the one that appears the most, and the range is the difference between.

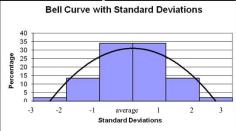
37

Descriptive Statistics

- Measures of Rates
 - Rate: How fast disease occurs in a population.
 - Ratio: How much disease compared to standard.
- Measures of Central Tendency
 - Central Tendency: How well the data clusters around an average value.
- Measures of Dispersion (Variability)
 - Dispersion: How widely your data is spread from the average.

Measures of Dispersion

- Range: the largest value minus the smallest value
- Standard deviation: describes the variability or dispersion in the data set


39

Standard Deviation

- A measure of degree of variability (spread) in individuals in the sample
 - Standard ("average") deviation ("difference") between an individual's mean and the sample mean

• In a normally distributed data set,

68% of values \pm 1 SD

95% of values \pm 2 SD

99% of values + 3 SD

Example 2:

- Your administrator is becoming concerned about the impact of healthcare associated infections on the length of stay in your ICU.
- She has asked you to provide her with some data to confirm her suspicions.

41

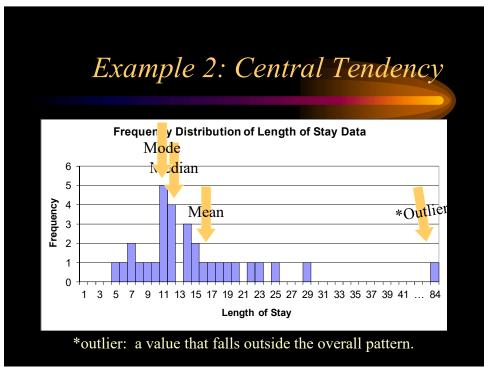
Example 2:

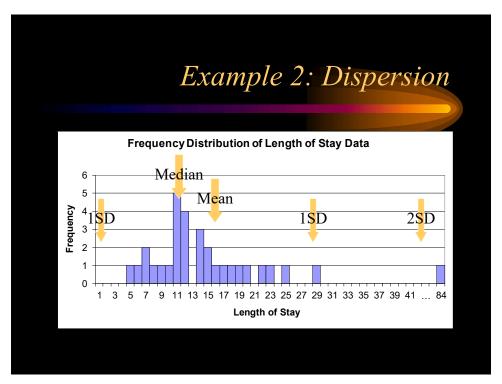
• Over the last 3 months you have identified a series of 31 ventilator-associated pneumonias with the total length of stay for each ICU patient as follows:

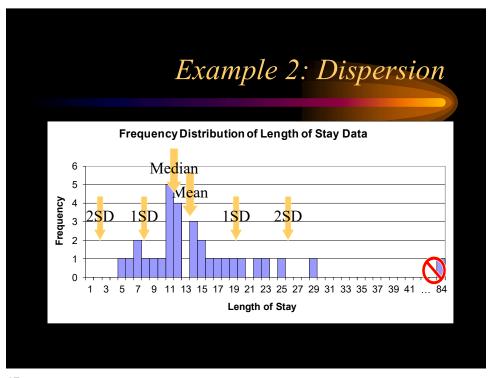
9, 7, 14, 11, 12, 22, 15, 10, 29, 16, 11, 7, 5, 12, 17, 25, 14, 14, 15, 23, 20, 11, 12, 18, 19, 11, 8, 6, 84, 12, 11

Example 2:

- What is the:
 - Mean?
 - Median?
 - Mode?
 - Range?


HINT: 5, 6, 7, 7, 8, 9, 10, 11, 11, 11, 11, 11, 12, 12, 12, 12, 14, 14, 14, 15, 15, 16, 17, 18, 19, 20, 22, 23, 25, 29, 84


43


Example 2: Answers

- What is the:
 - Mean?
 - 16.1
 - Median?
 - 12
 - Mode?
 - 11

- Range?
 - 79 (84[max]-5[min])
- Standard Deviation?can use programs likeExcel to calculate
 - 13.8

Displaying Surveillance Data "It's a non-linear pattern with outliers.....but for some reason I'm very happy with the data."

Displaying and Interpreting Surveillance Data

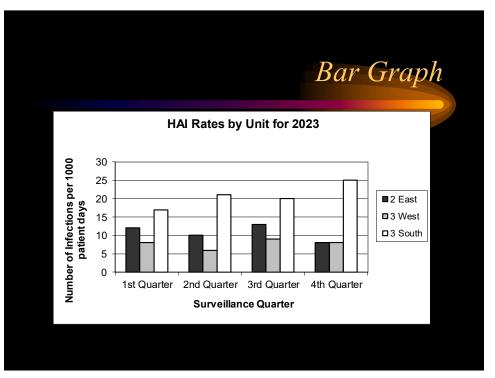
- Graphs: a visual representation of data on a coordinate system (e.g., two axes)
- Tables: a set of data arranged in rows and columns

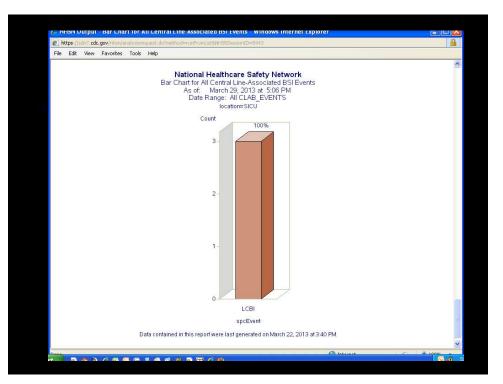
49

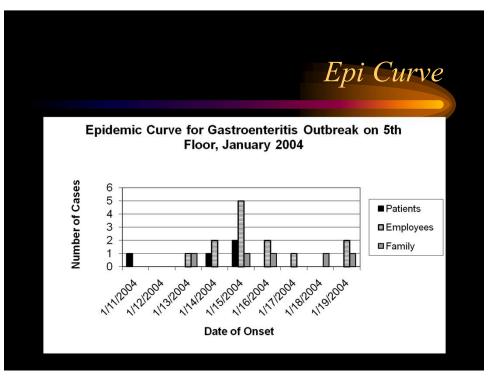
Data Types

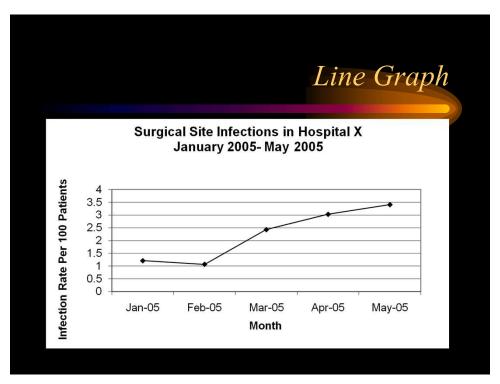
- Quantitative variables: numerical values
 - (e.g., number of infections, number of patients)
- Categorical variables: descriptive groups or categories
 - (e.g., units in the hospitals, occupational groups)

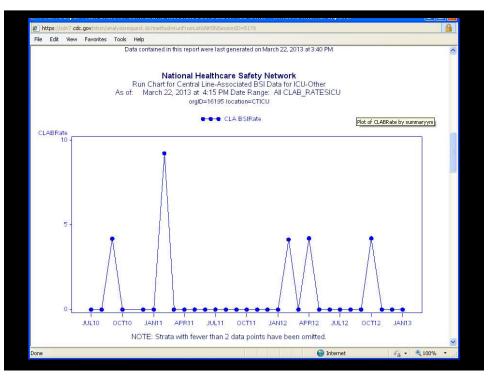
Features of Graphs and Tables

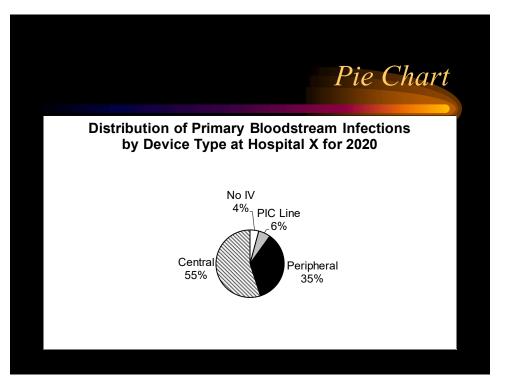

Graphs and tables should be self-explanatory!

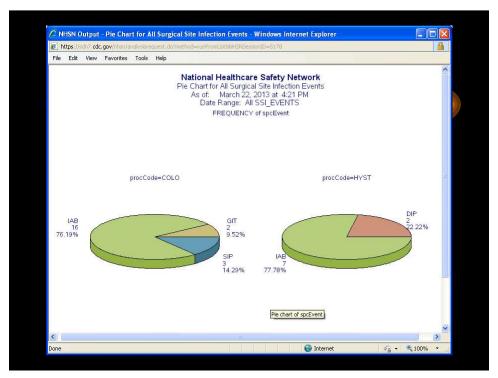

- Clear, concise title: describes person, place, time
- Informative labels: axes, rows, columns
- Appropriate intervals for axes
- Coded and labeled legends or keys
- Use footnotes to:
 - Explain codes, abbreviations, and symbols
 - Note exclusions
 - Note data source

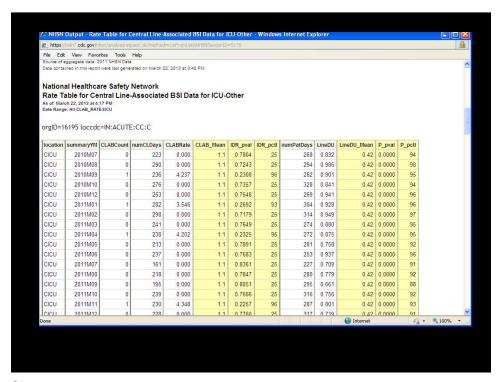

51

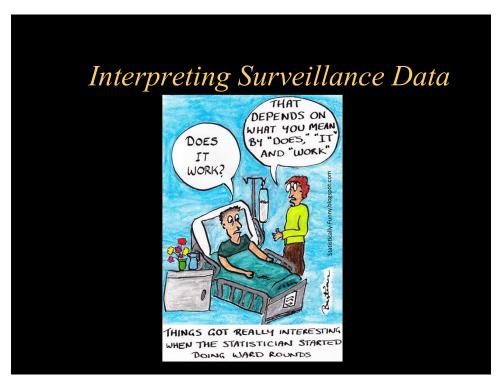

Graph Types


- Bar Graphs
 - E.g, Histograms (shown in previous example)
 - E.g., Comparison between categories
 - E.g., Epidemic Curves
- Line Graphs
 - E.g., To show trends over time
- Pie Charts
 - E.g., As a percentage of a whole



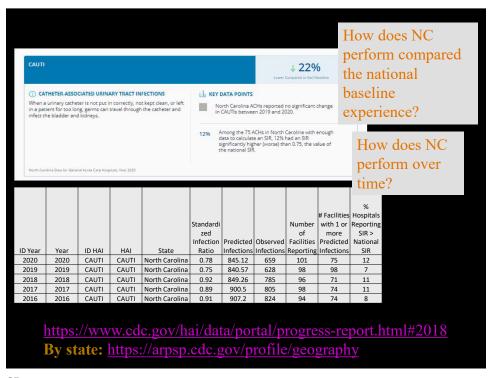


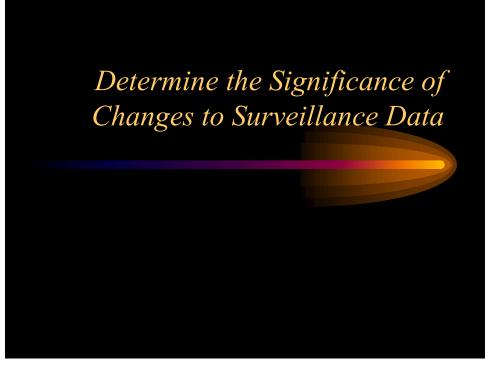




Number of Newly	y Diagnosed Cases		
by Age, United States, 2021			
Age Group (Years)	Number of Cases		
0-4	1242		
5-14	1081		
15-24	2482		
25-44	8153		
45-64	10916		
65+	7124		
Total	30998		

NHSN data summary, 2013

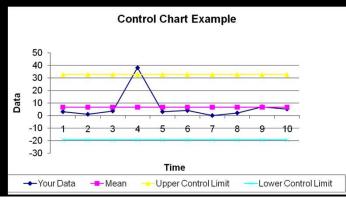

Urinary catheter associated UTI Rate*			Percentile						
Types of Location: Critical care units	No. Loca- tions	No. of CAUTI	Urinary catheter days	Pooled Mean	10%	25%	50% (median)	75%	90%
Medical cardiac	384	1494	658,345	2.3	0.0	0.7	1.9	3.4	4.9
Medical/surgical ≤15 beds	1645	2429	1,910,118	1.3	0.0	0.0	0.4	1.7	3.1
Surgical cardiothoracic	453	1715	942,852	1.8	0.0	0.7	1.5	2.4	3.4


^{*} Number of CA UTIs x 1000 Number of urinary catheter days

63

What does this NHSN data summary tell you?

- What is the mean UTI rate in the medical cardiac critical care unit?
 - 2.3 UTIs per 1000 urinary catheter days
- If your medical/surgical (≤15 beds) critical care unit has a rate of 1.6 UTIs per 1000 urinary catheter days—between what percentiles is it compared to the NHSN data?
 - Between the 50th-75th percentiles
- If your surgical cardiothoracic critical care unit has a rate of 4.2 UTIs per 1000 urinary catheter days—between what percentiles is it compared to the NHSN data?
 - Greater than the 90th percentile


Determine the Significance-How?

- Practical Significance vs. Statistical Significance
- Make comparisons
 - For example: over time, to other units, to other hospitals (NHSN data)
 - Remember to choose appropriate data for comparison (i.e., same denominator units)
- Apply a type of statistical test
 - e.g., control charts (for time trends)
- Other statistical tests and measures
 - P-values
 - 95% confidence intervals

67

Control Charts

• Tool to determine when infection rates are out of range. *How high is TOO high?*

Control Chart Example 3:

Month	2015 BSI Rate	Moving Range
1	4.5	-
2	3.2	1.3
3	3.6	0.4
4	3.5	
5	3.0	
6	4.0	
7	4.1	
8	4.6	
9	4.8	
10	5.2	
11	5.7	
12	6.5	

- Find the mean of the BSI rates for the last year.
- Calculate the moving ranges (subtract month 1 from 2, month 2 from 3...) and take absolute values (no negative values).
- Calculate the mean of the moving ranges.

69

Control Chart Example 3: Answers

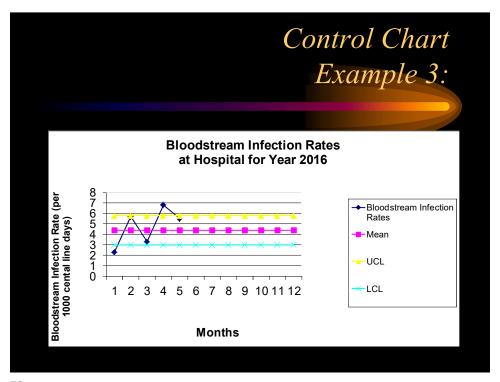
Month	2015 BSI	Moving
	Rate	Range
1	4.5	
2	3.2	1.3
3	3.6	0.4
4	3.5	0.1
5	3.0	0.5
6	4.0	1.0
7	4.1	0.1
8	4.6	0.5
9	4.8	0.2
10	5.2	0.4
11	5.7	0.5
12	6.5	0.8

- Find the mean of the BSI rates.
 - =4.4
- Calculate the moving ranges

See table

• Calculate the mean of the moving ranges.

=0.5

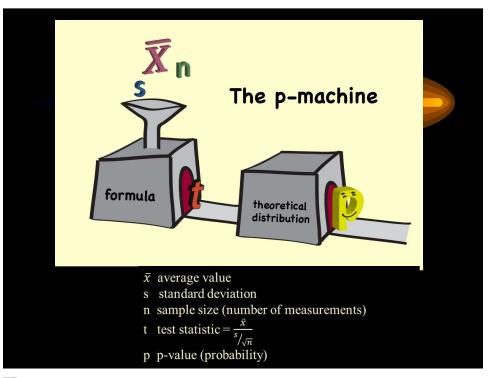

Control Chart Example 3:

- Calculate Upper Control limit= Mean + (2.66 x Mean of Moving Range)
- Calculate Lower Control limit= Mean (2.66 x Mean of Moving Range)
- Draw horizontal lines at the mean, UCL and LCL based on your historical data
- Then graph your current data and use the limits to identify potential problems.

71

Control Chart Example 3: Answers

- Calculate Upper Control limit= 5.8
- Calculate Lower Control limit= 3.0
- Draw horizontal lines at the mean, UCL and LCL based on your historical data
- Then graph your current data and use the limits to identify potential problems.

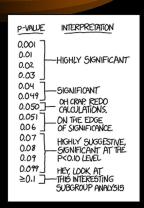

Statistical Tests – Why do we need them?

- Is this real? Use in clinical research designed to tell if the difference seen is due to chance, or due to some other cause (i.e. a real difference)
- We use these measures to make an **inference**
 - Process of drawing a conclusion about a larger group based on a sample or subset of the group

75

P value

- **P value**: probability of finding a difference as extreme or more extreme than what was found, assuming that the null hypothesis is true
 - Can be used as a measure of the degree of compatibility between observed data and null hypothesis
 - The conventional (yet arbitrary) threshold is 0.05,
 below which the null hypothesis is rejected
 - -0.05 accepts a 5% risk of a Type 1 error



P-Value Example:

• "Our study showed that people who washed their hands were less likely to get sick (P=0.06) and more likely to be nurses (P=0.01)."

P-Value Interpretation

- Probability that the difference does not reflect a true difference and is only due to chance.
- e.g., P=0.05 means that 95 out of 100 times your estimate was truly significant
- Generally a level of P<0.05 is considered "statistically significant."

79

Estimation: 95% Confidence Interval

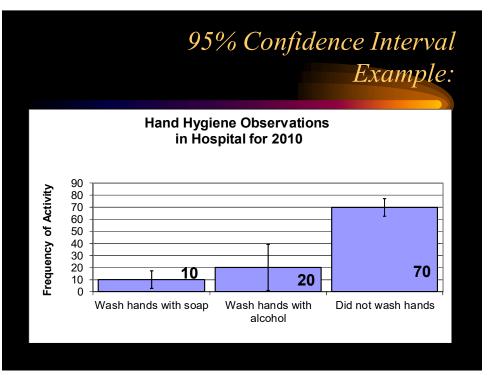
- 95% Confidence Interval (CI): calculated range of values surrounding the point estimate that are consistent with true effect
 - Formula: point estimate of the mean +/- $(2^* s/\sqrt{n})$
- Means that you are 95% confident that the true average value lies within this interval.

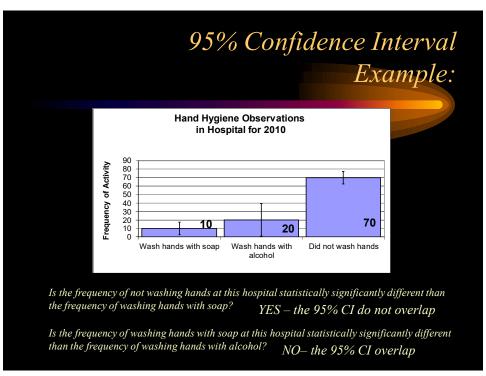
Statistical Variation of Estimates

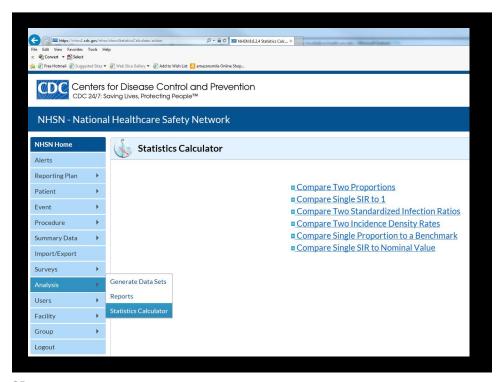
• Consider your calculated infection rate to be an estimation of the true rate.

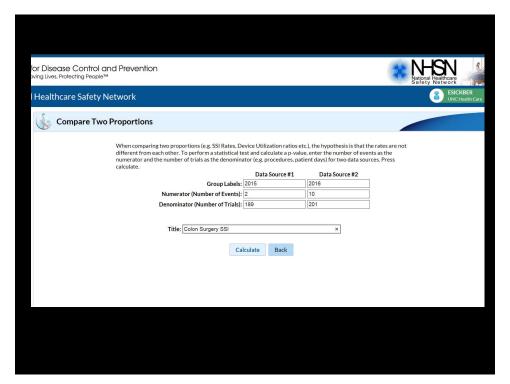
Why an estimation?

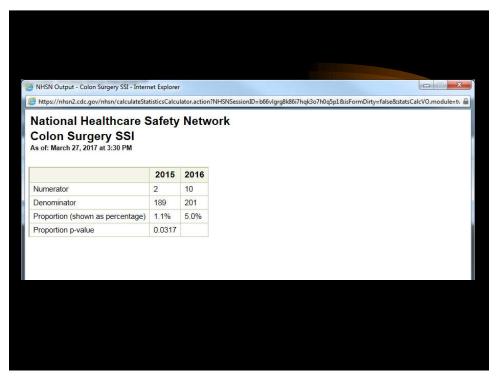
- You may only do surveillance on a <u>sample</u> of patients in your hospital.
- If surveillance activities were repeated by other IPs, your numerators may <u>vary slightly</u> based on interpretation of case definitions, available clinical information in the chart, etc.

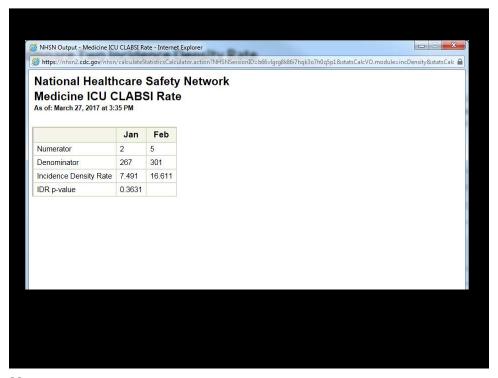

81

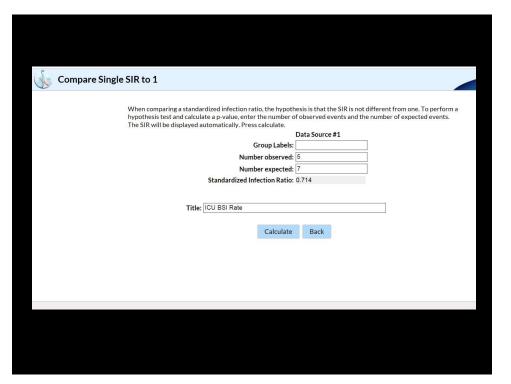

95% Confidence Interval Interpretation

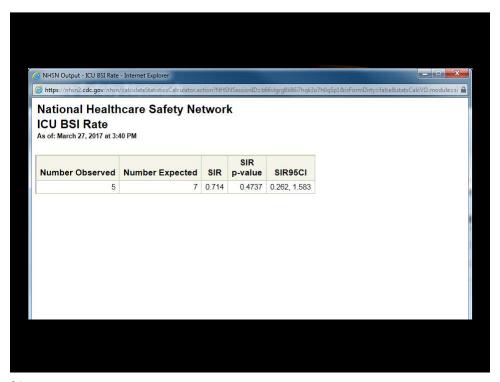

- Confidence interval size:
 - Wide: less confident with that estimate
 - Narrow: more confident with that estimate




- Overlapping intervals suggest no significant difference
- Non-overlapping intervals suggest significant differences



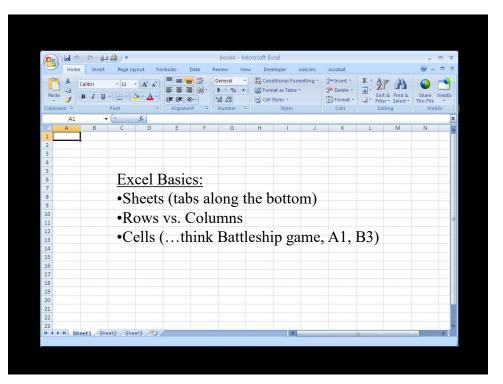






Conclusions

- Describe Surveillance Data
- Display and Interpret Surveillance Data
- Determine the Significance of Changes to Surveillance Data


Group Exercises Using Excel

- Infection Rates
 - Create a table
 - Practice formulas
 - Optional activities
 - Graph rates
 - Add 2nd series on graph for NHSN benchmark
 - SIR calculation

Group Exercises Using Excel

- Outbreak Investigation
 - Create line-listing of outbreak cases
 - Practice formatting cells, copy/paste, sorting
 - Optional activities:
 - Create a frequency table of cases
 - Graph outbreak epi-curve

95

Exercise Wrap-up

- Use Excel as a tool for
 - Calculations of infection rates
 - Creating line-listing for outbreaks or cluster investigations
 - Displaying data graphically
- Use each cell in Excel to capture single piece of data
- Graphs and tables should be self-explanatory!
 - Clear, concise title, informative labels
- Practice, practice!