Making the Most of Your Surveillance Data: Biostatistics for Infection Control

Emily Sickbert-Bennett, PhD, MS, CIC, FSHEA

Director of Infection Prevention, UNC Medical Center Professor of Medicine-Infectious Diseases, UNC School of Medicine

- Associate Professor of Epidemiology,
- Gillings School of Global Public Health

 Statistics

 Men are at 3 times higher risk...

 Numbers that describe the health of the population

 1 in 9 children...

 S9% OF THE POPULATION...

 The science used to interpret these numbers.

 There is a statistically significant difference...

2

"There are 3 kinds of lies. Lies, damned lies, and statistics."

~Popularized by Mark Twain

• Describes the persuasive power of numbers, particularly the use of statistics, to bolster weak arguments, and the tendency of people to disparage statistics that do not support their positions.

• Determine the Significance of Changes to Surveillance Data

3

1

Absolute Measures

- Simplest type of measurement
- Also known as counts
- Example:
 - Hospital A: 25 patients with norovirus
 - Hospital B: 10 patients with norovirus
- Is norovirus worse at Hospital A?

Relative Measures

- Includes a denominator
- Useful for comparisons
- Examples:
 - 16 cases of C. difficile out of 1000 patients
 - 1 positive *C. difficile* test out of 7 samples tested

Absolute versus Relative

Example: Norovirus activity at different hospitals

- Absolute measures
 - Hospital A: 25 patients ill
 - Hospital B: 10 patients ill
- Relative measures
 - Hospital A: 25 ill per 1000 patients = 0.025 or 2.5%
 - Hospital B: 10 ill per 250 patients = 0.040 or 4%

8

Descriptive Statistics Measures of Rates and Ratios Rate: How fast disease occurs in a population. Ratio: How much disease compared to standard. Measures of Central Tendency Central Tendency: How well the data clusters around an average value. Measures of Dispersion (Variability) Dispersion: How widely your data is spread from

9

7

 Incidence: the number of new cases of disease in a population over a period of time.

 - e.g., # of new MRSA cases per population during March

 Count of new cases x constant (e.g., 100 or 1000) = Number of people at risk

- The admitting department tells you that in March there were 89 patients in the unit with 311 patient-days.
- Respiratory care tells you that they provided 162 ventilator-days of care to 47 patients in March.
- You count the central line-days and find 284 linedays in 84 patients in March.

Example 1:

- In March, what was the VAP rate?
 - Incidence or prevalence?
 - Numerator?
 - Denominator?
 - Units?

Example 1: Answers

- In March, what was the VAP rate?
 - Incidence or prevalence?
 - Incid Numerator?

 - Denominator?
 - 162 or 47
 - Units?
 - "infections per 1000 ventilator-days" or "infections per 100 ventilated patients during March"
 ANSWER: 12.3 infections per 1000 ventilator-days;
 4.3 infections per 100 ventilated patients during March.

19

22

Example 1:

- On April 7, you were worried about the BSI rate so you return to the unit to do a "spot check" on all of the patients for a BSI.
- At that time with a census of 12, you reviewed 11 charts and found 1 healthcare associated BSI.

Example 1:

- On April 7th, what was the BSI infection rate at the time of your spot check?
 - Incidence or prevalence?
 - Numerator?
 - Denominator?
 - Units?

26

27

25

What Makes a Standardized Infection Ratio (SIR)?

- 1. Numerator (top number) =number of observed infections
- 2. Denominator (bottom number) =number of expected or predicted infections
 - Number of predicted infections = calculated based on your hospital's number of procedures, device days, risk factors, nursing units *compared to a standard infection rate* (e.g., historical data, state data, national data)

28

Standardized Infection Ratio

- SIR = <u># observed infections</u>
 # predicted infections
- SIR >1.0 \rightarrow more infections than predicted
- SIR <1.0 \rightarrow fewer infections than predicted
- ~LOWER SIRs are BETTER~

SIR Interpretations

• SIR=1

- The number of infections is the same as the number of expected infections
- No progress has been made in reducing infections since the baseline period or compared to another standard population (e.g., all NC, all US).

31

SIR Interpretations

• If the SIR is less than 1

- Fewer infections than predicted based on standard or baseline data
- Infection reduction/prevention compared to standard or baseline data
- -1 minus the SIR = percent reduction:
- For example, a SIR of 0.80 means that there was a 20 percent reduction from the standard population or baseline time period

32

SIR Interpretations

- If the SIR is greater than 1
 - More infections than predicted based on standard or baseline data
 - Infections are increased compared to standard or baseline data
 - SIR minus 1 = percent increase:
 For example, a SIR of 1.25 means that there was a 25 percent increase from the standard population or baseline time period

33

Example 1: SIR

- CLABSI rate = 4 CLABSI/284 line days
- Predicted Infections = 0.57
- What is the SIR?
- How would you explain the SIR to your administrator?

34

Example 1 SIR: Answers

- CLABSI rate = 4 CLABSI/284 line days
- Predicted Infections = 0.57
- What is the SIR?
 - SIR = 4 CLABSIs observed/0.57 CLABSIs predicted
 SIR=7.02
- How would you explain this SIR to your administrator?
 - We observed more (7 times) CLABSIs than predicted based on comparison to a standard rate*
 *state the source of standard rate, NHSN? which years?

Descriptive Statistics

- Measures of Rates
 - Rate: How fast disease occurs in a population.
 - Ratio: How much disease compared to standard
- Measures of Central Tendency

 Central Tendency: How well the data clusters around an average value.
- Measures of Dispersion (Variability)
 - Dispersion: How widely your data is spread from the average.

Measures of Central Tendency

- Mean: average of a group of numbers
- Median: middle number in an ordered group of numbers
- Mode: most common value in a group of numbers

Hey diddle diddle, the median's the middle; YOU ADD AND DIVIDE FOR THE MEAN. The mode is the one that appears the most, and the range is the difference between.

37

Measures of Dispersion

- Range: the largest value minus the smallest value
- Standard deviation: describes the variability or dispersion in the data set

39

<text><list-item><list-item><list-item><table-container>

Example 2:

- Your administrator is becoming concerned about the impact of healthcare associated infections on the length of stay in your ICU.
- She has asked you to provide her with some data to confirm her suspicions.

Example 2:

- Over the last 3 months you have identified a series of 31 ventilator-associated pneumonias with the total length of stay for each ICU patient as follows:
- 9, 7, 14, 11, 12, 22, 15, 10, 29, 16, 11, 7, 5, 12, 17, 25, 14, 14, 15, 23, 20, 11, 12, 18, 19, 11, 8, 6, 84, 12, <u>11</u>

- Measures of Rates
 - Rate: How fast disease occurs in a population.
 - Ratio: How much disease compared to standard
- Measures of Central Tendence
 - Central Tendency: How well the data clusters around an average value.
- Measures of Dispersion (Variability)
 - Dispersion: How widely your data is spread from the average.

Displaying and Interpreting Surveillance Data

- Graphs: a visual representation of data on a coordinate system (e.g., two axes)
- Tables: a set of data arranged in rows and columns

49

Data Types

- Quantitative variables: numerical values – (e.g., number of infections, number of patients)
- Categorical variables: descriptive groups or categories
 - (e.g., units in the hospitals, occupational groups)

50

Features of Graphs and Tables

- Graphs and tables should be self-explanatory!
- Clear, concise title: describes person, place, time
- Informative labels: axes, rows, columns
- Appropriate intervals for axes
- Coded and labeled legends or keys
- Use footnotes to:
 - Explain codes, abbreviations, and symbols
 - Note exclusions
 - Note data source

51

52

A https		e rabie for	sentral Line-	Associated	BSI Data for	CU-Other	- Window	s Internet Ex	plorer					JĽ
Dia Data	Isdn7.cdc.gov/n													*
File Eul	Wew Favo	rites Tools	Help											
Data contai	ined in this report	t were last gene	arated on March:	22.2013 at 3.4	40.PM									
Nation	al Healthca	are Safety	Network											
Rate Ta	able for Ce	ntral Line	-Associate	d BSI Da	ita for ICU-	Other								
As of: Mars Date Range	e: All CLAB RAT	17 PM ESICU												
orgID=1	6195 loccdo	=IN:ACUT	E:CC:C											
_														
location	summary'm	CLABCount	numCLDays	CLABRate	CLAB_Mean	IDR_pval	IDR_pctl	numPatDays	LineDU	LineDU_Mean	P_pval	P_pctl		
CICU	2010M07	0	223	0.000	1.1	0.7804	26	268	0.832	0.42	0.0000	94		
CICU	2010M08	0	290	0.000	1.1	0.7243	25	294	0.986	0.42	0.0000	96		
CICU	2010M09	1	235	4.237	1.1	0.2308	96	262	0.901	0.42	0.0000	95		
CICU	2010M10	0	276	0.000	1.1	0.7357	25	328	0.841	0.42	0.0000	94		
CICU	2010M12	0	253	0.000	1.1	0.7548	25	269	0.941	0.42	0.0000	96		
CiCU	2011M01	1	282	3.546	1.1	0.2692	93	304	0.928	0.42	0.0000	96		
CICU	2011M02	0	298	0.000	11	0.7179	25	314	0.949	0.42	0.0000	9/		
CICU	2011M03	0	241	0.000	1.1	0.7649	25	2/4	0.880	0.42	0.0000	30		
000	2011M04	1	2.55	4.202	1.1	0.2525	95	212	0.875	0.42	0.0000	30		
000	20111005	0	213	0.000	1.1	0.7891	25	281	0.758	0.42	0.0000	92		
000	20111006	0	23/	0.000	1.1	0.7683	25	253	0.937	0.42	0.0000	90		
000	2011M07	0	101	0.000	1.1	0.0361	20	221	0.709	0.42	0.0000	31		
000	2011M00	0	210	0.000	1.1	0.7647	20	200	0.779	0.42	0.0000	32		
000	20111/09	0	135	0.000	1.1	0.0001	20	230	0.001	0.42	0.0000	00		
000	2011010	0	239	0.000	4.4	0.7000	25	310	0.756	0.42	0.0000	36		
0000	2011/011		2.30	4.340		0.2251	30	207	0.001	0.42	0.0000	35		
	20110412					. u riteu				G Internet		50	· • 100%	•

62

NHSN data summary, 2013

									1
Urinary	cath UTI	eter as Rate*	sociate	d		Р	ercenti	le	
Types of Location: Critical care units	No. Loca- tions	No. of CAUTI	Urinary catheter days	Pooled Mean	10%	25%	50% (median)	75%	90%
Medical cardiac	384	1494	658,345	2.3	0.0	0.7	1.9	3.4	4.9
Medical/surgical <u><15</u> beds	1645	2429	1,910,118	1.3	0.0	0.0	0.4	1.7	3.1
Surgical cardiothoracic	453	1715	942,852	1.8	0.0	0.7	1.5	2.4	3.4
* <u>Number</u> Number	of CA U of urina	JTIs ry cathete	x 1 er days	000					

63

What does this NHSN data summary tell you?

- What is the mean UTI rate in the medical cardiac critical care unit?
 - 2.3 UTIs per 1000 urinary catheter days
- If your medical/surgical (≤15 beds) critical care unit has a rate of 1.6 UTIs per 1000 urinary catheter days—between what percentiles is it compared to the NHSN data? - Between the 50th-75th percentiles
- If your surgical cardiothoracic critical care unit has a rate of 4.2 UTIs per 1000 urinary catheter days—between what percentiles is it compared to the NHSN data? Greater than the 90th percentile

Determine the Significance-How?

- Practical Significance vs. Statistical Significance
- · Make comparisons
 - For example: over time, to other units, to other hospitals (NHSN data)
 - Remember to choose appropriate data for comparison (*i.e., same denominator units*)
- Apply a type of statistical test
- e.g., control charts (for time trends)
- Other statistical tests and measures
 - P-values
 - 95% confidence intervals

67

69

68

70

Control Chart Example 3:

- Calculate Upper Control limit= Mean + (2.66 x Mean of Moving Range)
- Calculate Lower Control limit= Mean (2.66 x Mean of Moving Range)
- Draw horizontal lines at the mean, UCL and LCL based on your historical data
- Then graph your current data and use the limits to identify potential problems.

Control Chart Example 3: Answers

- Calculate Upper Control limit= 5.8
- Calculate Lower Control limit= 3.0
- Draw horizontal lines at the mean, UCL and LCL based on your historical data
- Then graph your current data and use the limits to identify potential problems.

	Con	ntrol Chart Example 3:
	Bloodstream Infection Ra at Hospital for Year 201	tes 6
tstream Infection Rate (per 1000 cental line days)	⁸ / ₅ / ₅ / ₇	Boodstream Infection Rates Mean LCL LCL
Bloo	Months	

Samples of P values and 95% Confidence Intervals in use

"Our study showed that people who washed their hands were less likely to get sick (P=0.06) and more likely to be nurses (P=0.01)."

74

Statistical Tests – Why do we need them?

- Is this real? Use in clinical research designed to tell if the difference seen is due to chance, or due to some other cause (i.e. a real difference)
- We use these measures to make an inference

 Process of drawing a conclusion about a larger group based on a sample or subset of the group

75

76

P-Value Example:

• "Our study showed that people who washed their hands were less likely to get sick (P=0.06) and more likely to be nurses (P=0.01)."

P-Value Interpretation

- · Probability that the difference does not reflect a true difference and is only due to chance.
- e.g., P=0.05 means that 95 out of 100 times your estimate was truly significant
- Generally a level of P<0.05 is considered "statistically significant."

P-VALUE	INTERPRETATION
0.001 0.01 0.02 0.03	-HIGHLY SIGNIFICANT
0.04 0.050]- 0.050]- 0.051 0.06 0.07 0.08 0.07 0.09 0.09 0.097 0.097 0.097	-SIGNIFICANT CHLCRAP REDO CHLCULATIONS -ON THE EDGE OF SIGNIFICANCE HIGHLY SUCCESTIVE, -SIGNIFICANT AT THE PCO.IO LEVEL HEY, LOOK AT -THIS INTERESTING SUBGROUP ANALOSIS

79

Estimation: 95% Confidence Interval

 95% Confidence Interval (CI): calculated range of values surrounding the point estimate that are consistent with true effect

- Formula: point estimate of the mean +/- $(2^* s/\sqrt{n})$

• Means that you are 95% confident that the true average value lies within this interval.

80

Statistical Variation of Estimates

 Consider your calculated infection rate to be an estimation of the true rate.

Why an estimation?

- You may only do surveillance on a sample of patients in your hospital.
- If surveillance activities were repeated by other IPs, your numerators may vary slightly based on interpretation of case definitions, available clinical information in the chart, etc.
- 81

that estimate

with that estimate

· Narrow: more confident

- Overlapping intervals suggest no significant difference
- Non-overlapping intervals suggest significant differences

82

10

Wash hands with soap

Frequency of Activity

O B Https://whend.odc.gov.when File Edit View Forwarks: Tools Hi X @ Consumer = (2) Select A O Two Hotenall @ Supported Sites =	/showStatisticsCalculatesaction /p @ Thib Sice Calley • @ Add to 1	β + 6 0 0 1 10 MONINZ / Summa Cal ×
CDC Centers CDC 24/7: S	for Disease Cor aving Lives, Protecting I	ntrol and Prevention eopie™
NHSN - Nationa	l Healthcare Sa	fety Network
NHSN Home	Statistic	s Calculator
Reporting Plan		
Patient +		Compare Two Proportions
Event +		Compare Single Six to 1 Compare Two Standardized Infection Ratios
Procedure +		Compare Two Incidence Density Rates
Summary Data 🕨		Compare Single Proportion to a Benchmark
Import/Export		Compare single six to Nominal Value
Surveys +		
Analysis 🔹 🕨	Generate Data Sets	
Users 🕨	Reports	
Facility +	Statistics Calculator	
Group 🕨		

	57 A				Safety Network
lealthcaré Safety N	etwork				UNCI
💩 Compare Two	Proportions				
	different from each other. To perform a statistical te numerator and the number of trials as the denomina calculate.	st and calculate a p-vali tor (e.g. procedures, pa Data Source #1	ie, enter the number of even tient days) for two data sour Data Source #2	ts as the ces. Press	
	Group Labels:	2015	2016		
	Numerator (Number of Events):	2	10		
	Denominator (Number of Trials):	189	201		
	Title Color Direct 201				
	True: Colori Surgery SSI		×		
	Cal	culate Back			

🌜 Compare Two Incidence Density Rate

Jan Feb Numerator 2 5 Denominator 287 301	ne ICU CLABSI Rate b27, 2017 at 3.35 PM 2 5	Aedicine ICU C		
of: March 27, 2017 at 3:35 PM	b 27, 2017 at 3.35 PM		LABS	SI Rate
umerator 2 5 enominator 26 301	Jan Feb 2 5	of: March 27, 2017 at 3:	35 PM	
lumerator 2 5 Denominator 267 301	2 5		Jan	Feb
Denominator 267 301		Numerator	2	5
	tor 267 301	Denominator	267	301
ncidence Density Rate 7.491 16.611	Density Rate 7.491 16.611	ncidence Density Rate	7.491	16 611
DR p-value 0.3631		88 1		10.011
a Density Rate 7.491 16.611	Density Rate 7.491 16.611	a Density Rate	7.491	16 611
2 puplies 0.2621				10.011

Conclusions

- Describe Surveillance Data
- Display and Interpret Surveillance Data
- Determine the Significance of Changes to Surveillance Data

92

93

- Infection Rates
 - Create a table
 - Practice formulas
 - Optional activities
 - Graph rates
 - Add 2^{nd} series on graph for NHSN benchmark
 - SIR calculation

94

Group Exercises Using Excel

- Outbreak Investigation
 - Create line-listing of outbreak cases
 - Practice formatting cells, copy/paste, sorting
 - Optional activities:
 - Create a frequency table of cases
 - Graph outbreak epi-curve

Exercise Wrap-up

- Use Excel as a tool for
 - Calculations of infection rates
 - Creating line-listing for outbreaks or cluster investigations
 - Displaying data graphically
- Use each cell in Excel to capture single piece of data
- Graphs and tables should be self-explanatory!
 - Clear, concise title, informative labels
- Practice, practice, practice!