Making the Most of Your Surveillance Data: Biostatistics for Infection Control

Emily Sickbert-Bennett, PhD, MS, CIC, FSHEA
Director of Infection Prevention, UNC Medical Center
Professor of Medicine-Infectious Diseases,
UNC School of Medicine
Associate Professor of Epidemiology,
Gillings School of Global Public Health

1

- Describes the persuasive power of numbers, particularly the use of statistics, to bolster weak arguments, and the tendency of people to disparage statistics that do not support their positions.

3

Describing Surveillance Data Using Descriptive Statistics

Absolute Measures

- Simplest type of measurement
- Also known as counts
- Example:
- Hospital A: 25 patients with norovirus
-Hospital B: 10 patients with norovirus
- Is norovirus worse at Hospital A?

Relative Measures

- Includes a denominator
- Useful for comparisons
- Examples:
- 16 cases of C. difficile out of 1000 patients
-1 positive C. difficile test out of 7 samples tested

Descriptive Statistics

- Measures of Rates and Ratios
- Rate: How fast disease occurs in a population.
- Ratio: How much disease compared to standard.
- Measures of Central Tendency
- Central Tendency: How well the data clusters around an average value.
- Measures of Dispersion (Variability)
- Dispersion: How widely your data is spread from the average.

9

Denominators

- Represent the population at risk of becoming part of the numerator
- Often, the most difficult data to obtain, but essential for comparisons
- Ideally, should incorporate time and can account for risk factors such as device use (e.g., devicedays), length of stay (e.g., patient-days)

Absolute versus Relative

Example: Norovirus activity at different hospitals

- Absolute measures
- Hospital A: 25 patients ill
- Hospital B: 10 patients ill
- Relative measures
- Hospital A: 25 ill per 1000 patients $=0.025$ or 2.5%
- Hospital B: 10 ill per 250 patients $=0.040$ or 4%

8

What Makes a Rate?

1. Numerator (top number)

- e.g., number of infections

2. Denominator (bottom number)

- e.g., number of patients [proportion]
- e.g., number of patient-days, number of devicedays [incidence density/rate]

3. Time Frame

- e.g., day, week, month

10

What is a Patient/Device-Day?

$=15$ patient-days, device-days, etc.

- Gives more information than simply-3 patients
- Strategies: e.g., count how many at 9 am

Rate Measures

- Prevalence
- Incidence
- Attack Rate

13

Incidence

- Incidence: the number of new cases of disease in a population over a period of time.
- e.g., \# of new MRSA cases per population during March

Count of new cases $\quad \mathrm{x}$ constant (e.g., 100 or 1000) $=$
Number of people at risk

Prevalence

- Prevalence: the total number of cases of disease existing in a population at a point in time.
- e.g., \# of MRSA cases per population on March 8

Count of existing cases x constant (e.g., 100 or 1000) $=$
Number of people at risk

14

Attack Rate

- Attack Rate: the number of new cases of disease out of the population at risk.
- Related to incidence but always uses 100 as the constant, so it is expressed as a percent,
- Often used for outbreaks or clusters that occur over a short period of time
- e.g., \% of patients with MRSA during outbreak in Med ICU in March

Count of new cases \quad x $100=$
Number of people at risk

16

Example 1:

- The admitting department tells you that in March there were 89 patients in the unit with 311 patientdays.
- Respiratory care tells you that they provided 162 ventilator-days of care to 47 patients in March.
- You count the central line-days and find 284 linedays in 84 patients in March.
- In March, what was the VAP rate?
- Incidence or prevalence?
- Numerator?
- Denominator?
- Units?
- In March, what was the VAP rate?
- Incidence or prevalence?
- Incidence
- Numerator?
- 2
- Denominator?
- 162 or 47
- Units?
- "infections per 1000 ventilator-days" or "infections per 100 ventilated patients during March"
- ANSWER: 12.3 infections per 1000 ventilator-days; 4.3 infections per 100 ventilated patients during March.

20

Example 1: Answers

- In March, what was the CLA-BSI rate?
- Incidence or prevalence?
- Incidence
- Numerator?
- 4
- Denominator?
- 284 or 84
- Units?
- "infections per 1000 central line-days" or "infections per 100 patients with central lines during March"
- ANSWER: 14.1 infections per 1000 central linedays or 4.8 infections per 100 patients with central lines during March

22

Example 1: Answers

- In March, what was overall infection rate?
- Incidence or prevalence?
- Incidence
- Numerator?
- 9
- Denominator?
- 311 or 89
- Units?
- "infections per 1000 patient-days" or "infections per 100 patients during March'
- ANSWER: 28.9 infections per 1000 patient-days or 10.1 infections per 100 patients during March

24

Example 1:

- On April 7, you were worried about the BSI rate so you return to the unit to do a "spot check" on all of the patients for a BSI.
- At that time with a census of 12 , you reviewed 11 charts and found 1 healthcare associated BSI.

Example 1: Answers

- In April, what was the BSI infection rate at the time of your spot check?
- Incidence or prevalence?
- Prevalence
- Numerator?
- 1
- Denominator?
- 11
- Units?
- "prevalent infections per 100 patients on April 7th"
- ANSWER: 9 prevalent infections per 100 patients on April 7th.

27

Predicted Number of Infections

- 2015 as baseline year
- Logistic
regression/negative
binomial regression
- Limited patient level risk adjustment
- facility type, bed size, med school affiliation, types of units.

Details:
https://www.cdc.gov/nhsn/pdfs/ps-analysis-resources/nhsn-sir-guide.pdf

- On April 7th, what was the BSI infection rate at the time of your spot check?
- Incidence or prevalence?
- Numerator?
- Denominator?
- Units?

26

What Makes a Standardized Infection Ratio (SIR)?

1. Numerator (top number)
=number of observed infections
2. Denominator (bottom number)
=number of expected or predicted infections

- Number of predicted infections = calculated based on your hospital's number of procedures, device days, risk factors, nursing units compared to a standard infection rate (e.g., historical data, state data, national data)

28

Standardized Infection Ratio

- SIR = \# observed infections
\# predicted infections
- SIR $>1.0 \rightarrow$ more infections than predicted
- SIR $<1.0 \rightarrow$ fewer infections than predicted
- ~LOWER SIRs are BETTER~

SIR Interpretations

- SIR=1
- The number of infections is the same as the number of expected infections
- No progress has been made in reducing infections since the baseline period or compared to another standard population (e.g., all NC, all US).

SIR Interpretations

- If the SIR is less than 1
- Fewer infections than predicted based on standard or baseline data
- Infection reduction/prevention compared to standard or baseline data
- 1 minus the SIR = percent reduction: For example, a SIR of 0.80 means that there was a 20 percent reduction from the standard population or baseline time period

32

Example 1: SIR

- CLABSI rate $=4$ CLABSI/284 line days
- Predicted Infections $=0.57$
- What is the SIR?
- How would you explain the SIR to your administrator?

Descriptive Statistics

- CLABSI rate $=4$ CLABSI/284 line days
- Predicted Infections $=0.57$
- What is the SIR?
- SIR = 4 CLABSIs observed/0.57 CLABSIs predicted - SIR=7.02
- How would you explain this SIR to your administrator?

[^0]
Measures of Central Tendency

- Mean: average of a group of numbers
- Median: middle number in an ordered group of numbers
- Mode: most common value in a group of numbers

Hey diddle diddle,
the median's the middle;
YOU ADD AND DIMDE FOR THE MEAN.
The mode is the one that appears the most, and the range is the difference between.

Descriptive Statistics

- Measures of Rates
- Rate: How fast disease occurs in a population.
- Ratio: How much disease compared to standard.
- Measures of Central Tendency
- Central Tendency: How well the data clusters around an average value.
- Measures of Dispersion (Variability)
- Dispersion: How widely your data is spread from the average.

38

40

Example 2:

- Over the last 3 months you have identified a series of 31 ventilator-associated pneumonias with the total length of stay for each ICU patient as follows:
$9,7,14,11,12,22,15,10,29,16,11,7,5$, $12,17,25,14,14,15,23,20,11,12,18,19$. $11,8,6,84,12,11$

Example 2:

- What is the:
- Mean?
- Median?
- Mode?
- Range?

HINT: 5, 6, 7, 7, 8, 9, 10, 11, 11, 11, 11, 11, 12, 12, 12, 12, $14,14,14,15,15,16,17,18,19,20,22,23,25,29,84$

Example 2: Central Tendency

Frequen y Distribution of Length of Stay Data Mode

*outlier: a value that falls outside the overall pattern.

45

Example 2: Dispersion

Example 2: Dispersion

46

Displaying Surveillance Data

48

Displaying and Interpreting Surveillance Data

- Graphs: a visual representation of data on a coordinate system (e.g., two axes)
- Tables: a set of data arranged in rows and columns
- Quantitative variables: numerical values - (e.g., number of infections, number of patients)
- Categorical variables: descriptive groups or categories
- (e.g., units in the hospitals, occupational groups)

Features of Graphs and Tables

Graphs and tables should be self-explanatory!

- Clear, concise title: describes person, place, time
- Informative labels: axes, rows, columns
- Appropriate intervals for axes
- Coded and labeled legends or keys
- Use footnotes to:
- Explain codes, abbreviations, and symbols
- Note exclusions
- Note data source

51

53

54

55

57

59

56

58

60

61

63

65

Interpreting Surveillance Data

62

What does this NHSN data summary tell you?

- What is the mean UTI rate in the medical cardiac critical care unit?
- 2.3 UTIs per 1000 urinary catheter days
- If your medical/surgical (≤ 15 beds) critical care unit has a rate of 1.6 UTIs per 1000 urinary catheter days-between what percentiles is it compared to the NHSN data? - Between the $50^{\text {th }}-75^{\text {th }}$ percentiles
- If your surgical cardiothoracic critical care unit has a rate of 4.2 UTIs per 1000 urinary catheter days-between what percentiles is it compared to the NHSN data?
- Greater than the $90^{\text {th }}$ percentile

64

66

Determine the SignificanceHow?

- Practical Significance vs. Statistical Significance
- Make comparisons
- For example: over time, to other units, to other hospitals (NHSN data)
- Remember to choose appropriate data for comparison (i.e., same denominator units)
- Apply a type of statistical test
- e.g., control charts (for time trends)
- Other statistical tests and measures
- P-values
- 95\% confidence intervals

Control Chart Example 3:

Month	2015 BSI Rate	Moving Range
1	4.5	--
2	3.2	1.3
3	3.6	0.4
4	3.5	
5	3.0	
6	4.0	
7	4.1	
8	4.6	
9	4.8	
10	5.2	
11	5.7	
12	6.5	

- Find the mean of the BSI rates for the last year.
- Calculate the moving ranges (subtract month 1 from 2, month 2 from 3...) and take absolute values (no negative values).
- Calculate the mean of the moving ranges.

69

Control Chart
 Example 3:

- Calculate Upper Control limit= Mean + (2.66 x Mean of Moving Range)
- Calculate Lower Control limit= Mean - (2.66 x Mean of Moving Range)
- Draw horizontal lines at the mean, UCL and LCL based on your historical data
- Then graph your current data and use the limits to identify potential problems.

Control Charts

- Tool to determine when infection rates are out of range. How high is TOO high?

68

70

Control Chart

Example 3: Answers

- Calculate Upper Control limit= 5.8
- Calculate Lower Control limit= 3.0
- Draw horizontal lines at the mean, UCL and LCL based on your historical data
- Then graph your current data and use the limits to identify potential problems.

73

Statistical Tests Why do we need them?

- Is this real? Use in clinical research designed to tell if the difference seen is due to chance, or due to some other cause (i.e. a real difference)
- We use these measures to make an inference
- Process of drawing a conclusion about a larger group based on a sample or subset of the group

75

77

Samples of P values and 95\% Confidence Intervals in use

"Our study showed that people who washed their hands were less likely to get sick $(\mathrm{P}=0.06)$ and more likely to be nurses $(\mathrm{P}=0.01)$."

74

76

P-Value
Example:

- "Our study showed that people who washed their hands were less likely to get sick ($\mathrm{P}=0.06$) and more likely to be nurses ($\mathrm{P}=0.01$)."

P-Value Interpretation

- Probability that the difference does not reflect a true difference and is only due to chance.
- e.g., $\mathrm{P}=0.05$ means that 95 out of 100 times your estimate was truly significant
- Generally a level of $\mathrm{P}<0.05$ is considered "statistically significant."

Statistical Variation of Estimates

- Consider your calculated infection rate to be an estimation of the true rate.
Why an estimation?
- You may only do surveillance on a sample of patients in your hospital.
- If surveillance activities were repeated by other IPs, your numerators may vary slightly based on interpretation of case definitions, available clinical information in the chart, etc.

Estimation: 95\% Confidence Interval

- 95\% Confidence Interval (CI): calculated range of values surrounding the point estimate that are consistent with true effect
- Formula: point estimate of the mean $+/-(2 * s / \sqrt{n})$
- Means that you are 95% confident that the true average value lies within this interval.

80

95\% Confidence Interval Interpretation

- Confidence interval size:
- Wide: less confident with that estimate
- Narrow: more confident with that estimate
- For comparisons,

- Overlapping intervals suggest no significant difference
- Non-overlapping intervals suggest significant differences

82

84

85

87

89

86

88

90

91

93

Group Exercises Using Excel

- Outbreak Investigation
- Create line-listing of outbreak cases
- Practice formatting cells, copy/paste, sorting
- Optional activities:
- Create a frequency table of cases
- Graph outbreak epi-curve

Group Exercises Using Excel

- Infection Rates
- Create a table
- Practice formulas
- Optional activities
- Graph rates
- Add $2^{\text {nd }}$ series on graph for NHSN benchmark
- SIR calculation

94

96

Exercise Wrap-up

- Use Excel as a tool for
- Calculations of infection rates
- Creating line-listing for outbreaks or cluster investigations
- Displaying data graphically
- Use each cell in Excel to capture single piece of data
- Graphs and tables should be self-explanatory!
- Clear, concise title, informative labels
- Practice, practice, practice!

[^0]: - We observed more (7 times) CLABSIs than predicted based on comparison to a standard rate*
 *state the source of standard rate, NHSN? which years?

