

1

3

5

2

Learning Objectives

4

Absolute Measures

- Simplest type of measurement
- Also known as counts or frequencies
- Example:
- LTC A: 25 residents with novel coronavirus
- LTC B: 10 residents with novel coronavirus

Is COVID19 worse at LTC A?

7

9

11

Absolute versus Relative

Example:
Novel coronavirus among LTC facility residents

- Absolute measures
- LTC A: 25 residents ill
- LTC B: 10 residents ill
- Relative measures
- LTC A: 25 ill per 100 residents $=0.25$ or 25%
- LTC B: 10 ill per 25 residents $=0.40$ or 40%

8

Denominators

Represent the population at risk of becoming part of the numerator

- Often, the most difficult data to obtain, but essential for comparisons
- Ideally, should incorporate time and can account for risk factors such as device use (e.g., device-days), length of stay (e.g., resident-days)

12

13

15

17

Incidence

- Incidence: the number of new cases of disease in a population over a period of time.
> e.g., \# of new MRSA cases per population during March

Count of new cases $\quad x$ constant (e.g., 100 or 1000)
Number of people at risk

Example 1: Answers

- In the first quarter, what was the UTI rate?
- Incidence or prevalence?
- Incidence
- Numerator?
- 3
- Denominator?
- 180 residents or 12,000 resident days
- Units?
- "infections per 100 residents or infections per 1000 resident days"
- ANSWER: 1.7 infections per 100
residents or 0.25 infections per 1000
resident days
18

19

21

23

Example 1:

- On April 7th, what was the UTI infection rate at the time of your spot check?
- Incidence or prevalence?
- Numerator?
- Denominator?
- Units?

20

Example 1:

- You also routinely track counts of influenza-like illness in your 200 resident facility.
- During March, there is a cluster of influenza-like illness. In a short time period, 25 residents become ill and meet your case definition.
- During March, there were 180 residents in

During March, there were 180 residen
the facility with 5,000 resident-days.

22

Example 1: Answers

- What is the attack rate of influenzalike illness at your facility during March?
- Numerator?
- 25
- Denominator?
- 180
- Units?
- "percentage of residents who had tuenza-tike tiness
- ANSWER: 144 of resididents with influenza-like illness
during outbreak in March

25

27

29

Measures of Central Tendency

- Mean: average of a group of numbers
- Median: middle number in an ordered group of numbers
- Mode: most common value in a group of numbers

Hey diddle diddle, the median's the middle; YOU ADD AND DIVIDE FOR THE MEAN. The mode is the one that appears the most, and the range is the difference between.

26

28

Example 2:

- For the past year, once a month, you have been conducting hand hygiene audits in your facility these are your monthly compliance results:
> $55 \%, 92 \%, 86 \%, 94 \%, 91 \%, 89 \%, 79 \%, 93 \%$, 92\%, 88\%, 87\%, 90\%
- You decide as a first step to calculate the mean, median, mode and range of the monthly data to help describe hand hygiene compliance at your facility

31

33

35

Example 2: Answers

- What is the:
-Mean?
>86.3\%
- Median?
>89.5\%
- Mode?
-92\%
- Range?
-39\% (94\%[max]55\%[min])
- Standard Deviation? can use programs like Excel to calculate
-10.2\%

Example 2: Dispersion

34

36

Data Types

Displaying and Interpreting Surveillance Data

- Quantitative variables: numerical values
- (e.g., number of infections, number of residents)
- Categorical variables: descriptive groups or categories
- (e.g., areas of the facility, gender, occupational
groups)
- Data visualization is typically a graphical representation of these two types of data that allows you to see and understand trends, outliers and patterns in data

39

Graph Types

- Bar Graphs
E.g., Histograms (shown in previous example)
- E.g., Comparison between categories
E.g., Epidemic Curves
- Line Graphs
-E.g., To show trends over time
- Pie Charts
E.g., As a percentage of a whole

Features of Graphs and Tables

Graphs and tables should be self-explanatory!

- Clear, concise title: describes person, place, time
- Informative labels: axes, rows, columns
- Appropriate intervals for axes

Coded and labeled legends or keys
Use footnotes to:
Explain codes, abbreviations, and symbols

- Note exclusions
- Note data source

40

42

43

45

47

44

46

48

49

51

53

50

52

54

55
Control Chart Example 3:

57

Control Chart Example 3:

Calculate Upper Control limit= Mean + (2.66 x Mean of Moving Range)

- Calculate Lower Control limit= Mean (2.66 x Mean of Moving Range)

In this example:
$U C L=4.4+(2.66 \times 0.5)=5.8$
LCL $=4.4-(2.66 \times 0.5)=3.0$

56

58

Control Chart Example 3:

- Draw horizontal lines at the mean, UCL and LCL based on your historical data
- Then graph your current data and use the limits to identify potential problems.

60

61

63

65

Hypotheses

- Null hypothesis: values are equal
- Alternative hypothesis: values differ
- These statements are mutually exclusive
- They cover all possible outcomes
- In the end, only one can be selected
$\mathrm{p}=$ value: the probability that the observed difference (or a more extreme one) was caused by random chance if the null hypothesis was true

62

64

66

67

69

Learning Objectives

5	Describe Surveillance Data	Define these terms: rates, prevalence, incidence, mean, median, mode, standard deviation

	Display and Interpret Surveillance Data	Compare bar graphs, line graphs, pie charts and tables

68

Online Excel Resources

www.excel-easy.com
https://excelexposure.com/
https: / /www.thoughtco.com/excel-formulas-step-by-step-tutorial-3123636
https://www.gcflearnfree.org/excel2016/ sorting-data/1/

70

