

MICROBIOLOGIC SAMPLING OF THE ENVIRONMENT

- Do not conduct random microbiological sampling of air, water, and surfaces (IB)
- When indicated, conduct microbiologic sampling as part of an epidemiologic investigation (IB)
- Limit microbiologic sampling for QA to: biological monitoring, dialysis water, or evaluation of infection control measures (IB)

MICROBIOLOGIC SAMPLING OF THE ENVIRONMENT

- Select a high-volume sampler if level of microbial contamination are expected to be low (II)
- When sampling water, choose media and incubation temperature to facilitate recovery (II)
- When conducting environmental sampling, document departures from standard methods (II)

Microbiologic Sampling of the Environment Justification

- Will environmental sampling provide meaningful, interpretable, and actionable data that help identify actual or potential contamination problems associated with a specific procedure or instrument
- Should not be done if no plan for interpreting and acting on the results obtained
- Is it justified on epidemiological grounds
- No accepted criteria for defining surfaces or air as clean/safe in healthcare

7

Microbiologic Sampling of the Environment Investigation of an Outbreak

- When?
 - Environmental reservoirs or fomites are implicated epidemiologically in disease transmission (e.g., bronchoscopy)
 - Plan for interpreting and acting on the results
 - Plan to link microorganisms from the environment with clinical isolates by molecular epidemiology

Microbiologic Sampling of the Environment Investigation of an Outbreak

Rutala et al. J. Thorac. Cardiovasc. Surg. 96:157-161

- Microbiologic investigation: causative organism isolated from several components of the IABP and the hands of a nurse who manipulated the IABP's buttons/switches.
- Molecular epidemiology: similar plasmid profile from strains from the patients and the IABP.
- Conclusion: transmission presumably occurred during manipulation of IV lines.

Long-Term Care Facilities Environmental Surfaces Rutala et al. ICHE. In press										
7	Resident Rooms			Community Rooms			Overall Total			
		EIP Total	EIP		EIP Total	EIP	Number	EIP Total	EIP	
	Number of	Counts	Counts	Number of	Counts	Counts	of	Counts	Counts	
	Positive	on	per	Positive	on	per	Positive	on	per	
	Rodac	Positive	Positive	Rodac	Positive	Positive	Rodac	Positive	Positive	
Pathogen Identified	with EIP	Rodacs	Rodac	with EIP	Rodacs	Rodac	with EIP	Rodacs	Rodac	
C. difficile	34	856	25.18	5	7	1.40	39	863	22.13	
MRSA	51	2998	58.78	15	101	6.73	66	3099	46.95	
VRE	1	1	1.00	1	7	7.00	2	8	4.00	
MDR GNR	10	43	4.30	7	144	20.57	17	187	11.00	

Comparing the best strategy with the worst strategy (i.e., Quat vs Quat/UV) revealed that a reducting EIPs. 94% in EIP (60.8 vs 3.4) led to a 35% decrease in colonization/infection (2.3% vs 1.5%). Our data demonstrated that a decrease in room contamination was associated with a decrease in patient colonization/infection. First study which quantitatively described the entire pathway whereby improved disinfection decreases microbial contamination which in-turn reduced patient colonization/infection.

Air Sampler

Air Sampling J Boyce 2012 Settle plates can be expressed as number of bacteria in an area (e.g., patient room) for a specified time (e.g., 1 hour) Liquid impingers can provide data on the number of particles/microbes per volume of air sampled (e.g., 100 CFU/20 ft³) Volumetric Sieve samplers (e.g., Anderson-stage 1 8µm and above, stage 2-0.8 to 8.0µm) can size particles and sample specific volume (e.g., 20 CFU of respirable particles/20 ft³)

- When? Routine testing of water not indicated (except dialysis) but sampling in support of outbreak investigation can help determine infection control measures
- Use established methods (eg, sample water ASAP after collection, 100ml minimum, sterile collection equipment, neutralizers, recovery media and incubation temp [diluted peptone, 30°C], pour plates [high counts], membrane filtration-0.2µ [low counts, larger volumes])
- Filters are placed on agar plates and incubated for 48h

Factors affecting organism recovery	Details	References [13,16], [19] ^a , [25,26,45], [49] ^a , [51,52]	
Target organism and strain	Different sampling techniques recover different species with varying success. Different strains of the same organism can recover differently, even with the same technique.		
Level of contamination	Some sampling techniques are not appropriate for surfaces with a high bioburden. For highly contaminated surfaces, sponges were significantly better for recovering <i>C. difficile (P</i> < 0.05) than contact plates. Contact plates may also show confluent growth leading to inaccurate counts.	[23], [30] ^a , [44], [46] ^a , [51]	
Wet/dry surface	Cotton swabs recovered significantly more colonies than other swabs from a wet surface. Brush textured swabs performed poorly. 3M Enviroswabs gave better recovery on some surface types.	[21,44,53]	
Adsorption of cells	Adsorbed cells are best recovered with direct contact methods such as contact plates and dipslides.	[13,15,24,27,44,54]	
Pressure and contact time	Insufficient pressure will not recover all organisms from the surface, and contact time of 10 s must be adhered to for maximum recovery.	[13,23,28], [46] *, [53]	
Surface material and	Smoother surfaces are generally easiest to recover from. Some sampling	[13, 14, 16, 18, 22],	
topography	devices are inappropriate for uneven or rough surfaces, such as contact plates. Some methods are more suitable for smaller and uneven areas such as swabs.	[30] *, [51,53,54]	
Media	Different types of media recover different organisms and can inhibit growth of others. Target organism and potential surface bioburden must be considered before selection.	[15], [19] *	
Pre-wetting, enrichment, transport medium and post-test processing	Wetting solutions and diluents can either aid or hinder recovery, depending on the target organism. Choice of transport medium is important [73] and the choice should vary between the target organism, time taken to transport to the lab, and post-test storage conditions and storage time. Most losses occur during processing, such as vortexing.	[17,21,22,24,26], [28–30 ^a], [44,48], [49] ^a	
Brand	Cherwell contact plates were shown to give better recoveries than Oxoid or bioMérieux, with significantly better recovery for S. epidermidis	[13]	
Cell injury and environmental stressors	Uninjured cells recover better than injured or stressed cells. Sponges were shown to potentially recover injured <i>L. monocytogenes</i> from a steel surface, though to no statistical significance.	[15, 17, 45, 54, 55]	
Size of surface sampled	If a large surface area is to be sampled, the method choice should reflect this. Sponges and roller-devices can easily sample large surface areas.	[24,25], [30] °, [46] °, [49] °	
No. of samples	Time of processing may make some methods less suitable.	[56] *, [57] *	
Techn <mark>ician time</mark> and skill	Some methods, such as contact plates, allow fast sampling and easy interpretation, and require less training. Other techniques, such as swabs, can have variability in method between technician and require some skill to allow proper sample recovery.	[26]	
Cost	Some sampling techniques, while giving better recoveries, may not be used in favour for sampling equipment that is cheaper or more readily available in the clinical environment.	[17], [30] ^a , [45], [47] ^a , [58]	
Sensitivity	More sensitive methods will give truer results. Macrofoam swabs gave the best sensitivity for MRSA over contact plates and swabs, needing the lowest concentration to give a positive result. Dipslides were the most sensitive for adsorbed cells.	[14,15], [30] ^a , [44], [46] ^a , [51,52]	
Hospital or ward speciality	There is a difference in contamination found between wards and ward type (general or specialist). Rooms with infected or colonized patients	[49] ^a , [56] ^a , [59], [60] ^a	

Reference
CDC Guidelines for Environmental Infection Control in Health-Care Facilities, 2003.
Rawlinson S, Ciric L, Cloutman-Green E. J Hosp Infect 2019;103:363-374
Boyce J. Environmental Evaluation. <u>https://dph.georgia.gov</u>
Thompson SC, Rutala WA, Sickbert-Bennett EE, DiBiase LM, Anderson DJ, Weber DJ, CDC Epicenters Program. A comparison of methods for microbiologic environmental sampling. Infect Control Hosp Epidemiol. 2022 Dec 1;1-3. doi: 10.1017/ice.2022.270.