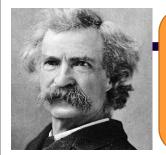
Making the Most of Your Surveillance Data:

Biostatistics for Infection Control



Emily Sickbert-Bennett, PhD, MS, CIC, FSHEA

Director of Infection Prevention, UNC Medical Center Professor of Medicine-Infectious Diseases, UNC School of Medicine Associate Professor of Epidemiology, Gillings School of Global Public Health

1

Statistics The margin of error... 17 in every 100 people... Numbers that describe Men are at 3 times higher the health of the risk... population 1 in 9 children... **39% OF THE** The **science** used to POPULATION... interpret these numbers. There is a statistically Risk of dying is 8 times significant higher among... difference...

"There are 3 kinds of lies. Lies, damned lies, and statistics."

~Popularized by Mark Twain

• Describes the persuasive power of numbers, particularly the use of statistics, to bolster weak arguments, and the tendency of people to disparage statistics that do not support their positions.

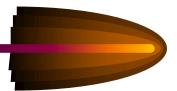
3

Outline

- Describe Surveillance Data
- Display and Interpret Surveillance Data
- Determine the Significance of Changes to Surveillance Data

Δ

Describing Surveillance Data Using Descriptive Statistics


5

Absolute Measures

- Simplest type of measurement
- Also known as counts
- Example:
 - Hospital A: 25 patients with norovirus
 - Hospital B: 10 patients with norovirus
- Is norovirus worse at Hospital A?

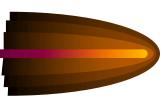
Relative Measures

- Includes a denominator
- Useful for comparisons
- Examples:
 - 16 cases of *C. difficile* out of 1000 patients
 - 1 positive *C. difficile* test out of 7 samples tested

7

Absolute versus Relative

Example: Norovirus activity at different hospitals


- Absolute measures
 - Hospital A: 25 patients ill
 - Hospital B: 10 patients ill
- Relative measures
 - Hospital A: 25 ill per 1000 patients = 0.025 or 2.5%
 - Hospital B: 10 ill per 250 patients = 0.040 or 4%

Descriptive Statistics

- Measures of Rates and Rati
 - Rate: How fast disease occurs in a population.
 - Ratio: How much disease compared to standard.
- Measures of Central Tendency
 - Central Tendency: How well the data clusters around an average value.
- Measures of Dispersion (Variability)
 - Dispersion: How widely your data is spread from the average.

9

What Makes a Rate?

- 1. Numerator (top number)
 - e.g., number of infections
- 2. Denominator (bottom number)
 - e.g., number of patients [proportion]
 - e.g., number of patient-days, number of device-days [incidence density/rate]
- 3. Time Frame
 - e.g., day, week, month

Denominators

- Represent the population at risk of becoming part of the numerator
- Often, the most difficult data to obtain, but essential for comparisons
- Ideally, should incorporate time and can account for risk factors such as device use (e.g., devicedays), length of stay (e.g., patient-days)

11

Patient/Device-Day? Patient 1 Patient 2 Patient 3 =15 patient-days, device-days, etc. • Gives more information than simply—3 patients • Strategies: e.g., count how many at 9 am

Rate Measures

- Prevalence
- Incidence
- Attack Rate

13

Prevalence

- Prevalence: the <u>total</u> number of cases of disease existing in a population <u>at a point in time</u>.
 - e.g., # of MRSA cases per population on March 8

<u>Count of existing cases</u> x constant (e.g., 100 or 1000) = Number of people at risk

Incidence

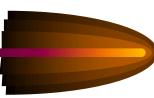
- Incidence: the number of <u>new</u> cases of disease in a population <u>over a period of</u> time.
 - e.g., # of <u>new</u> MRSA cases per population <u>during</u> March

<u>Count of new cases</u> x constant (e.g., 100 or 1000) = Number of people at risk

15

Attack Rate

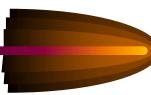
- Attack Rate: the number of <u>new</u> cases of disease out of the population at risk.
 - Related to incidence but always uses 100 as the constant, so it is expressed as a <u>percent</u>.
 - Often used for outbreaks or clusters that occur over a short period of time
 - e.g., <u>%</u> of patients with MRSA during outbreak in Med ICU in March


<u>Count of new cases</u> x 100 = Number of people at risk

- You perform HAI surveillance for ventilator associated pneumonias (VAP) and central line associated bloodstream infections (CLABSI) in your 12 bed intensive care unit.
- In March, you identify 2 new VAPs, 4 new CLABSIs and 3 new respiratory infections (not ventilator associated).

17

Example 1:


- The admitting department tells you that in March there were 89 patients in the unit with 311 patient-days.
- Respiratory care tells you that they provided 162 ventilator-days of care to 47 patients in March.
- You count the central line-days and find 284 line-days in 84 patients in March.

- In March, what was the VAP rate?
 - Incidence or prevalence?
 - Numerator?
 - Denominator?
 - Units?

19

Example 1:

- In March, what was the CLA-BSI rate?
 - Incidence or prevalence?
 - Numerator?
 - Denominator?
 - Units?

- In March, what was overall infection rate?
 - Incidence or prevalence?
 - Numerator?
 - Denominator?
 - Units?

21

Example 1:

- On April 7, you were worried about the BSI rate so you return to the unit to do a "spot check" on all of the patients for a BSI.
- At that time with a census of 12, you reviewed 11 charts and found 1 healthcare associated BSI.

- On April 7th, what was the BSI infection rate at the time of your spot check?
 - Incidence or prevalence?
 - Numerator?
 - Denominator?
 - Units?

23

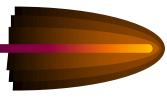
What Makes a Standardized Infection Ratio (SIR)?

- 1. Numerator (top number) = number of observed infections
- 2. Denominator (bottom number)
 - =number of expected or predicted infections
 - Number of predicted infections = calculated based on your hospital's number of procedures, device days, risk factors, nursing units compared to a standard infection rate (e.g., historical data, state data, national data)

Predicted Number of Infections

- 2015 as baseline year (2022 for MRSA, Surgery Infections COLO/HYST)
- Logistic regression/negative binomial regression
- Limited patient level risk adjustment
 - facility type, bed size, med school affiliation, types of units.

Details


https://www.cdc.gov/nhsn/pdfs/ps-analysis-resources/nhsn-sir-guide.pd

25

Standardized Infection Ratio

- SIR = # observed infections # predicted infections
- SIR >1.0 \rightarrow more infections than predicted
- SIR <1.0 \rightarrow fewer infections than predicted
- ~LOWER SIRs are BETTER~

SIR Interpretations

- SIR=1
- The number of infections is the same as the number of expected infections
- No progress has been made in reducing infections since the baseline period or compared to another standard population (e.g., all NC, all US).

27

SIR Interpretations

- If the SIR is less than 1
 - Fewer infections than predicted based on standard or baseline data
 - Infection reduction/prevention compared to standard or baseline data
 - 1 minus the SIR = percent reduction: For example, a SIR of 0.80 means that there was a 20 percent reduction from the standard population or baseline time period

SIR Interpretations

- If the SIR is greater than 1
 - More infections than predicted based on standard or baseline data
 - Infections are increased compared to standard or baseline data
 - SIR minus 1 = percent increase:
 For example, a SIR of 1.25 means that there was a 25 percent increase from the standard population or baseline time period

29

Example 1: SIR

- CLABSI rate = 4 CLABSI/284 line days
- Predicted Infections = 0.57
- What is the SIR?
- How would you explain the SIR to your administrator?

Descriptive Statistics

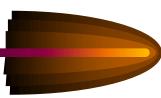
- Rate: How fast disease occurs in a population.
- Ratio: How much disease compared to standard.
- Measures of Central Tendency
 - Central Tendency: How well the data clusters around an average value.
- Measures of Dispersion (Variability)
 - Dispersion: How widely your data is spread from the average.

31

Measures of Central Tendency

- Mean: average of a group of numbers
- **Median:** middle number in an ordered group of numbers
- Mode: most common value in a group of numbers

Hey diddle diddle, the median's the middle; YOU ADD AND DIVIDE FOR THE MEAN. The mode is the one that appears the most, and the range is the difference between.


Descriptive Statistics

- Measures of Rates
 - Rate: How fast disease occurs in a population.
 - Ratio: How much disease compared to standard.
- Measures of Central Tendency
 - Central Tendency: How well the data clusters around an average value.
- Measures of Dispersion (Variability)
 - Dispersion: How widely your data is spread from the average.

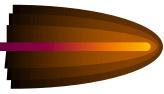
33

Measures of Dispersion

- Range: the largest value minus the smallest value
- Standard deviation: describes the variability or dispersion in the data set

Standard Deviation

- A measure of degree of variability (spread) in individuals in the sample
 - Standard ("average") deviation ("difference") between an individual's mean and the sample mean
- In a normally distributed data set,


68% of values <u>+</u> 1 SD

95% of values \pm 2 SD

99% of values <u>+</u> 3 SD

35

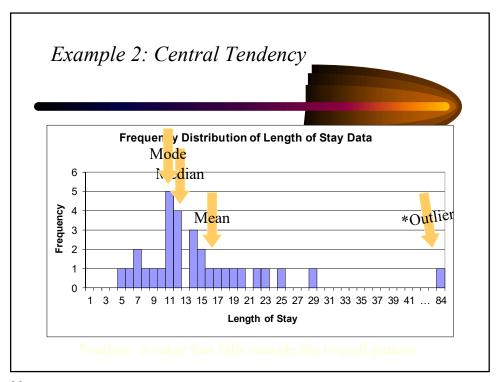
Example 2:

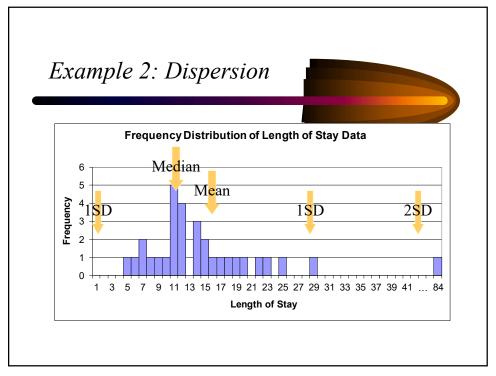
- Your administrator is becoming concerned about the impact of healthcare-associated infections on the length of stay in your ICU.
- She has asked you to provide her with some data to confirm her suspicions.

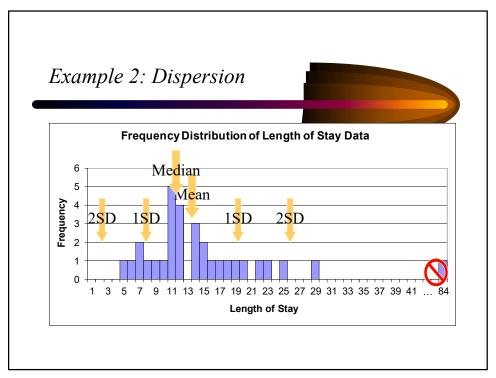
Example 2:

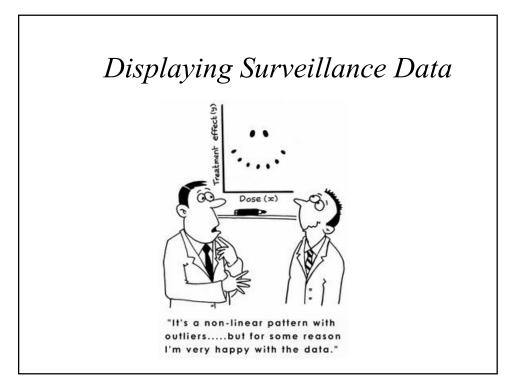
• Over the last 3 months you have identified a series of 31 ventilator-associated pneumonias with the total length of stay for each ICU patient as follows:

9, 7, 14, 11, 12, 22, 15, 10, 29, 16, 11, 7, 5, 12, 17, 25, 14, 14, 15, 23, 20, 11, 12, 18, 19, 11, 8, 6, 84, 12, 11

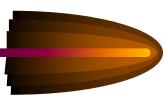

37


Example 2:




- What is the:
 - Mean?
 - Median?
 - Mode?
 - Range?

HINT: 5, 6, 7, 7, 8, 9, 10, 11, 11, 11, 11, 11, 12, 12, 12, 12, 14, 14, 14, 15, 15, 16, 17, 18, 19, 20, 22, 23, 25, 29, 84


Displaying and Interpreting Surveillance Data

- Graphs: a visual representation of data on a coordinate system (e.g., two axes)
- Tables: a set of data arranged in rows and columns

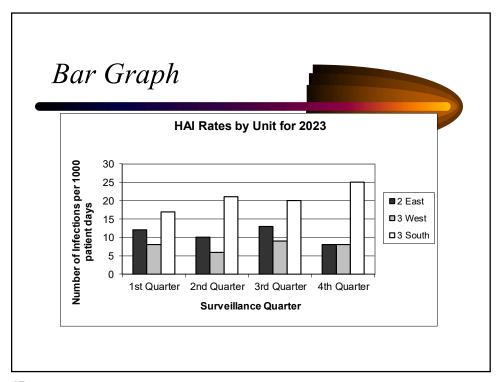
43

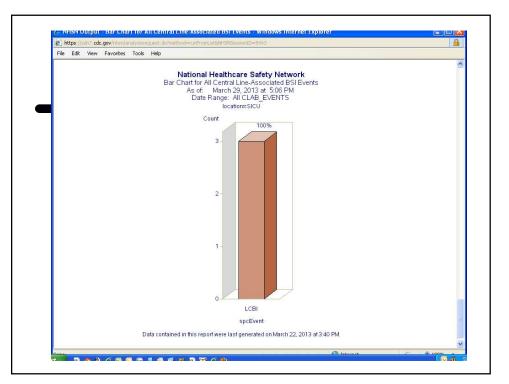
Data Types

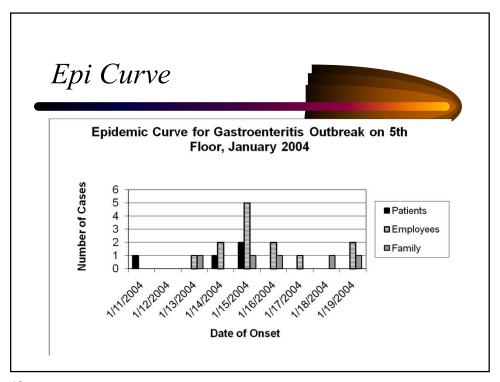
- Quantitative variables: numerical values
 - (e.g., number of infections, number of patients)
- Categorical variables: descriptive groups or categories
 - (e.g., units in the hospitals, occupational groups)

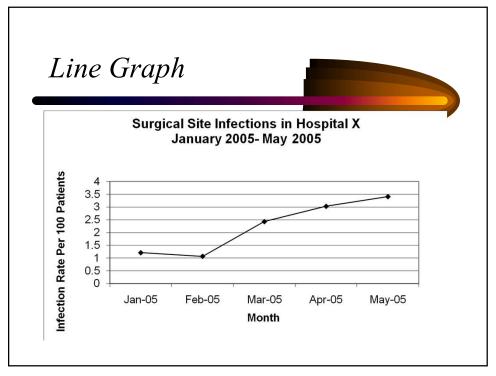
Features of Graphs and Tables

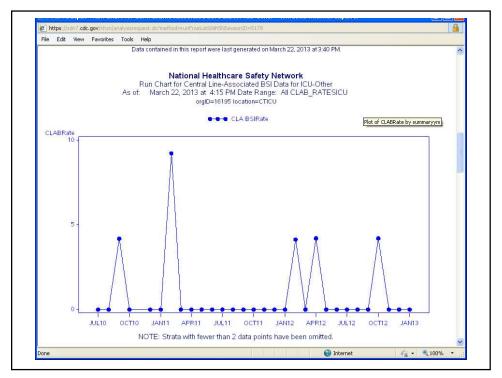
Graphs and tables should be self-explan

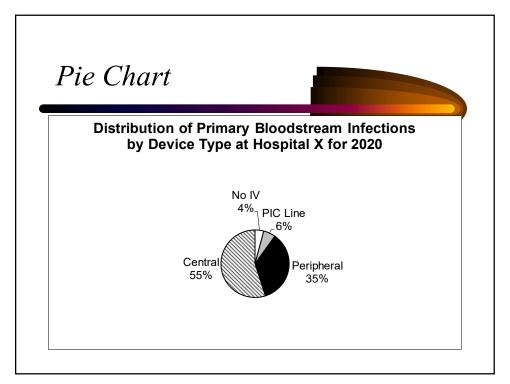

- Clear, concise title: describes person, place, time
- Informative labels: axes, rows, columns
- Appropriate intervals for axes
- Coded and labeled legends or keys
- Use footnotes to:
 - Explain codes, abbreviations, and symbols
 - Note exclusions
 - · Note data source

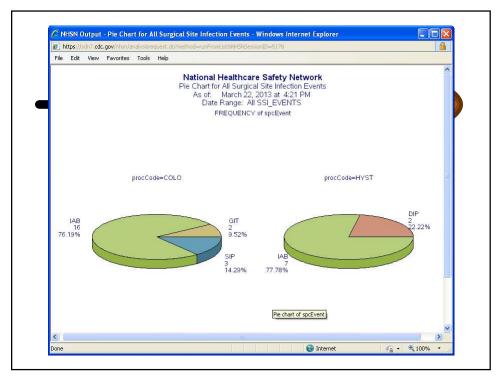

45

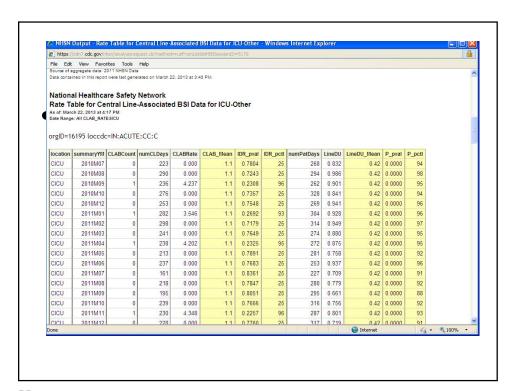

Graph Types



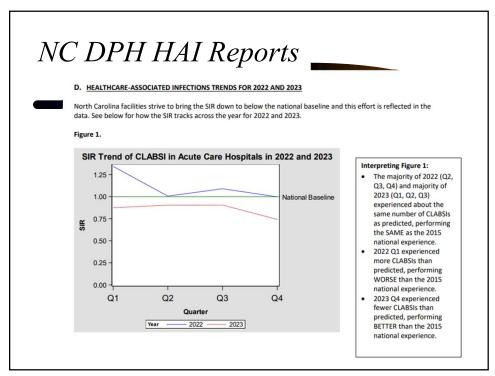

- Bar Graphs
 - E.g, Histograms (shown in previous example)
 - E.g., Comparison between categories
 - E.g., Epidemic Curves
- Line Graphs
 - E.g., To show trends over time
- Pie Charts
 - E.g., As a percentage of a whole

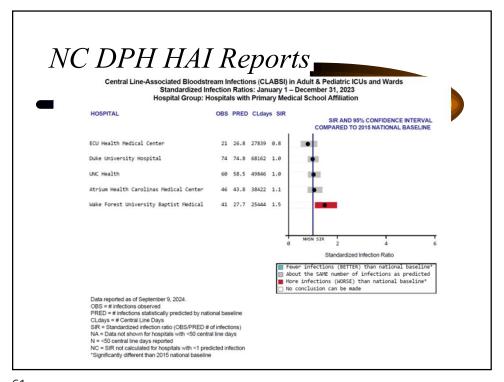






2S	
	y Diagnosed Cases
by Age, Unite Age Group (Years)	ed States, 2021 Number of Cases
0-4	1242
5-14	1081
15-24	2482
25-44	8153
45-64	10916
65+	7124
Total	30998

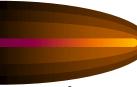

Interpreting Surveillance Data THAT DEPENDS ON WHAT YOU MEAN BY "DOES," "IT AND "WORK? WORK? THINGS GOT REALLY INTERESTING WHEN THE STATISTICIAN STARTED DOING WARD ROUNDS


	N	VHS	N da	ta s	ur	ma	ry, 2	201	3
Urinary		eter as Rate*		d		P	ercenti	le	
Types of Location: Critical care units	No. Loca- tions	No. of CAUTI	Urinary catheter days	Pooled Mean	10%	25%	50% (median)	75%	90%
Medical cardiac	384	1494	658,345	2.3	0.0	0.7	1.9	3.4	4.9
Medical/surgical ≤15 beds	1645	2429	1,910,118	1.3	0.0	0.0	0.4	1.7	3.1
Surgical cardiothoracic	453	1715	942,852	1.8	0.0	0.7	1.5	2.4	3.4

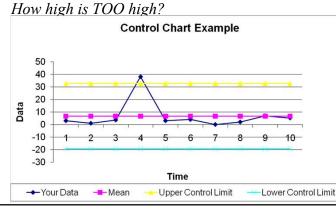
What does this NHSN data summary tell you?

- What is the mean UTI rate in the medical cardiac critical care unit?
- If your medical/surgical (≤15 beds) critical care unit has a rate of 1.6 UTIs per 1000 urinary catheter days—between what percentiles is it compared to the NHSN data?
- If your surgical cardiothoracic critical care unit has a rate of 4.2 UTIs per 1000 urinary catheter days—between what percentiles is it compared to the NHSN data?

	NHSN Acute Care Hospitals reporting during 2023 3. Bo. Central line-associated bloodstran (incidence (CLASSI), oritical are locations How does NC															
	3 So. Central line-associated boodstream infections (CLASSI), critical care locations HO No. of Infections 95% C for SIR Facility-specific SIRs									w a	.oes	INC	,			
State	State NHSN Mandate2	No. of Acute Care Hospitals Reportings	Observed	Predicted	SIR	Lower	Upper	No. of hosp with at least 1 predicted CLABSI	% of hosp with SIR sig higher than national SIR 4	% c with low nar	1	rfori		otl	ner	
Alabama	Yes	67	184	200.245	0.919	0.793	1.059	30	10%		Sta	ies:				
Alaska	No	7	12	11.728	1.023	0.554	1.740	3								
Arizona	No	54	129	215.833	0.598	0.501	0.708	37	3%		11%	0.000	0.000	0.363	0.920	1.12
Arkansas	Yes	38	89	118.803	0.749	0.605	0.917	22	5%		5%	0.000	0.338	0.435	0.908	1.54
California	Yes	314	815	973.984	0.837	0.781	0.896	195	10%		4%	0.000	0.266	0.727	1.172	1.89
Colorado	Yes	47	70	111.202	0.629	0.494	0.791	28	0%		4%	0.000	0.000	0.556	0.808	1.29
Connecticut	Yes	28	55	90.588	0.607	0.462	0.784	18	0%		0%					
D.C.	Yes	8	40	55.103	0.726	0.526	0.979	7			-					
Delaware	Yes	9	18	27.823	0.647	0.395	1.003	5								
Florida	No	204	424	723.701	0.586	0.532	0.644	131	4%		11%	0.000	0.000	0.449	0.807	1.39
Georgia	Yes	91	296	363.551	0.814	0.725	0.911	53	9%		2%	0.000	0.514	0.751	1.074	1.64
Guam	No	2									-					
Hawaii	Yes	15	34	33.091	1.027	0.723	1.420	9								
Idaho	No	14	14	27.205	0.515	0.293	0.843	7								
Illinois	Yes	118	275	333.760	0.824	0.731	0.926	65	5%		2%	0.000	0.307	0.603	1.137	1.69
Indiana	Yes	70	105	219.359	0.479	0.393	0.577	41	2%		12%	0.000	0.144	0.459	0.774	0.94
Iowa	No	30	54	62.527	0.864	0.655	1.118	10	10%		0%	- 4				
Kansas	No	36	39	61.232	0.637	0.459	0.862	12	0%		8%					
Kentucky	Yes	63	148	167.511	0.884	0.750	1.035	29	7%		10%	0.136	0.431	0.928	1.381	1.78
Louisiana	No	70	122	151.943	0.803	0.670	0.955	31	6%		3%	0.000	0.346	0.679	1.055	1.47
Maine	Yes	14	24	25.594	0.938	0.615	1.374	4								
Maryland	Yes	44	124	134.469	0.922	0.770	1.096	32	9%		3%	0.000	0.000	0.693	1.051	1.85
Massachusetts	Yes	57	171	228.248	0.749	0.643	0.868	28	11%		7%	0.000	0.393	0.693	0.961	1.45
Michigan	No	77	258	274.948	0.938	0.829	1.058	52	13%		0%	0.000	0.301	0.676	1.284	1.79
Minnesota	Yes	33	99	142.846	0.693	0.566	0.840	17	6%		12%	-		74		
Mississippi	Yes	42	87	87.372	0.996	0.802	1.222	18	6%		0%					
Missouri	Yes	70	159	228.195	0.697	0.595	0.812	32	6%		6%	0.000	0.339	0.603	0.815	1.27
Montana	No	11	5	11.033	0.453	0.166	1.005	5			- 5/3					
Nebraska	No	16	34	43.289	0.785	0.553	1.085	8								
Nevada		20	79	94,974	0.832	0.663	1.031	14	0%		7%					
New Hampshire	Yes	13	12	23.951	0.501	0.271	0.852	7					- 12			
New Jersey	Yes	71	103	194.304	0.530	0.435	0.640	50	0%		6%	0.000	0.000	0.445	0.775	1.12
New Mexico	Yes	27	22	42.433	0.518	0.333	0.772	8								
New York	Yes	159	452	565.756	0.799	0.728	0.875	105	8%		4%	0.000	0.000	0.613	1.083	1.79
North Carolina	Yes	83	270	310.729	0.869	0.770	0.977	40	8%		3%	0.000	0.330	0.788	1.253	1.53
North Dakota	No	7	8	14.427	0.555	0.258	1.053	4								

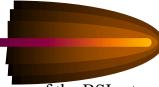


Determine the Significance-How?


- Practical Significance vs. Statistical Significance
- Make comparisons
 - For example: over time, to other units, to other hospitals (NHSN data)
 - Remember to choose appropriate data for comparison (*i.e.*, *same denominator units*)
- Apply a type of statistical test
 - e.g., control charts (for time trends)
- Other statistical tests and measures
 - P-values
 - 95% confidence intervals

63

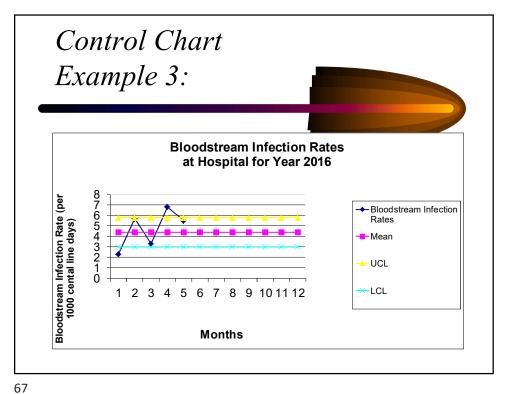
Control Charts

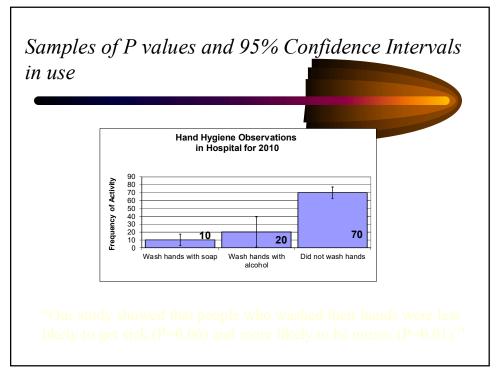


• Tool to determine when infection rates are out of range.

Control Chart Example 3:

Month	2015 BSI Rate	Moving Range
1	4.5	
2	3.2	1.3
3	3.6	0.4
4	3.5	
5	3.0	
6	4.0	
7	4.1	
8	4.6	
9	4.8	
10	5.2	
11	5.7	
12	6.5	

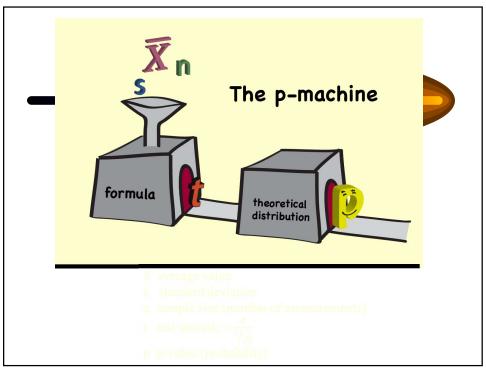



- Find the mean of the BSI rates for the last year.
- Calculate the moving ranges (subtract month 1 from 2, month 2 from 3...) and take absolute values (no negative values).
- Calculate the mean of the moving ranges.

65

Control Chart Example 3:

- Calculate Upper Control limit= Mean + (2.66 Mean of Moving Range)
- Calculate Lower Control limit= Mean (2.66 x Mean of Moving Range)
- Draw horizontal lines at the mean, UCL and LCL based on your historical data
- Then graph your current data and use the limits to identify potential problems.

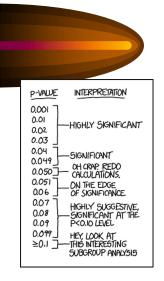

Statistical Tests – Why do we need them?

- Is this real? Use in clinical research designed to tell if the difference seen is due to chance, or due to some other cause (i.e. a real difference)
- We use these measures to make an **inference**
 - Process of drawing a conclusion about a larger group based on a sample or subset of the group

69

P value

- **P value**: probability of finding a difference as extreme or more extreme than what was found, assuming that the null hypothesis is true
 - Can be used as a measure of the degree of compatibility between observed data and null hypothesis
 - The conventional (yet arbitrary) threshold is 0.05, below which the null hypothesis is rejected
 - 0.05 accepts a 5% risk of a Type 1 error



• "Our study showed that people who washed their hands were less likely to get sick (P=0.06) and more likely to be nurses (P=0.01)."

P-Value Interpretation

- Probability that the difference does not reflect a true difference and is only due to chance.
- e.g., P=0.05 means that 95 out of 100 times your estimate was truly significant
- Generally a level of P<0.05 is considered "statistically significant."

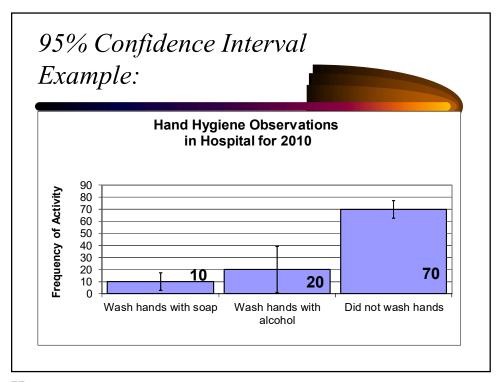
73

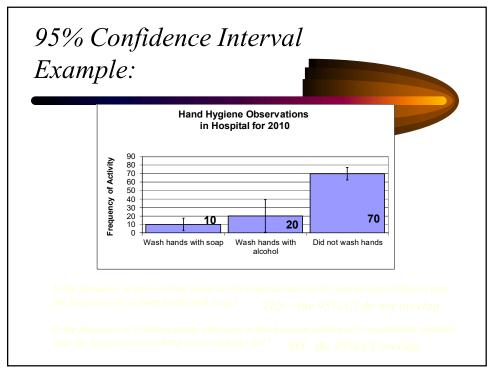
Estimation: 95% Confidence Interval

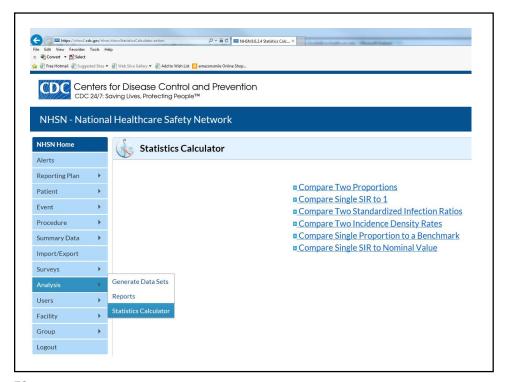
- 95% Confidence Interval (CI): calculated range of values surrounding the point estimate that are consistent with true effect
 - Formula: point estimate of the mean $\pm (2*s/\sqrt{n})$
- Means that you are 95% confident that the true average value lies within this interval.

Statistical Variation of Estimates

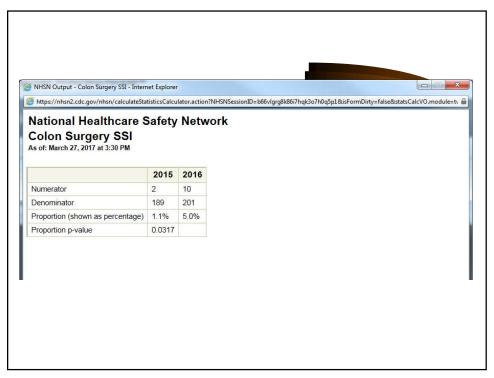
• Consider your calculated infection rate to be an estimation of the true rate.

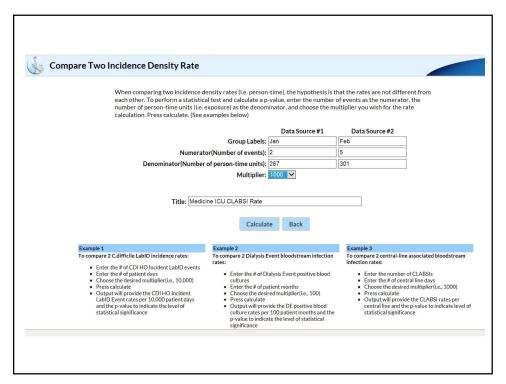

Why an estimation?

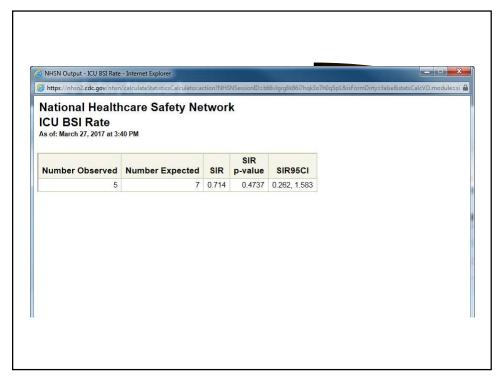

- You may only do surveillance on a <u>sample</u> of patients in your hospital.
- If surveillance activities were repeated by other IPs, your numerators may <u>vary slightly</u> based on interpretation of case definitions, available clinical information in the chart, etc.

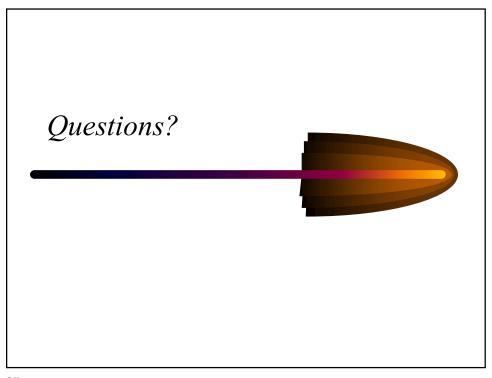

75

95% Confidence Interval Interpretation


- Confidence interval size:
 - Wide: less confident with that estimate
 - Narrow: more confident with that estimate
- For comparisons,
 - Overlapping intervals suggest no significant difference
 - Non-overlapping intervals suggest significant differences



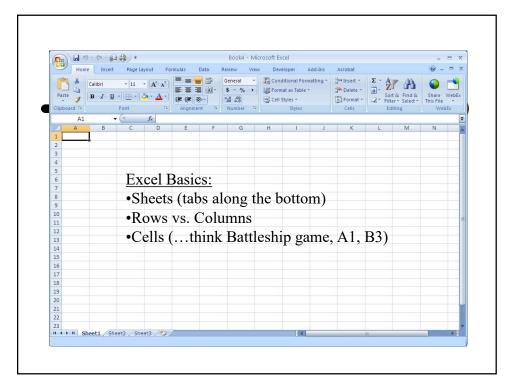

or Disease Control ving Lives, Protecting People				NHSN National Healthcare
Healthcare Safety	Network			Safety Network ESICKBER UNC Health C
Compare Tw	vo Proportions			
	When comparing two proportions (e.g. SSI Rates, E different from each other. To perform a statistical in numerator and the number of trials as the denominal calculate.	est and calculate a p-valu	e, enter the number of events	as the
		Data Source #1	Data Source #2	
	Group Labels		2016	
	Numerator (Number of Events)		10	
	Denominator (Number of Trials)	189	201	
	Title: Colon Surgery SSI		×	
	G	alculate Back		



Sompare	Single SIR to 1
	When comparing a standardized infection ratio, the hypothesis is that the SIR is not different from one. To perform a hypothesis test and calculate a p-value, enter the number of observed events and the number of expected events. The SIR will be displayed automatically. Press calculate.
	Data Source #1
	Group Labels:
	Number observed: 5
	Number expected: 7
	Standardized Infection Ratio: 0.714
	Title: ICU BSI Rate
	Calculate Back

Conclusions

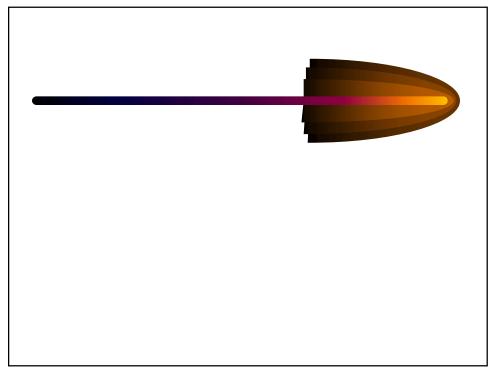
- Describe Surveillance Data
- Display and Interpret Surveillance Data
- Determine the Significance of Changes to Surveillance Data


Group Exercises Using Excel

- Infection Rates
 - Create a table
 - Practice formulas
 - Optional activities
 - Graph rates
 - Add 2nd series on graph for NHSN benchmark
 - SIR calculation

Group Exercises Using Excel

- Outbreak Investigation
 - Create line-listing of outbreak cases
 - Practice formatting cells, copy/paste, sorting
 - Optional activities:
 - Create a frequency table of cases
 - Graph outbreak epi-curve


89

Exercise Wrap-up

- Use Excel as a tool for
 - Calculations of infection rates
 - Creating line-listing for outbreaks or cluster investigations
 - Displaying data graphically
- Use each cell in Excel to capture single piece of data
- Graphs and tables should be self-explanatory!
 - Clear, concise title, informative labels
- Practice, practice!

91

