

Antibiogram for Urine

North Carolina Antimicrobial Stewardship Conference
February 18, 2026

**Kelly Flett, MD, MMSc
Jacinta Chin, PharmD, BCIDP**

**Melissa Martin, Business Analyst
Gary Purkett, Programmer Analyst
Rita Stainback, MS, MT (ASCP) SM, DLM, Lab Director**

We have no significant financial relationships with ineligible companies to disclose.

Objectives

**Describe the development of a community
antibiogram**

**Review North Carolina susceptibilities for
common ambulatory pathogens**

**Discuss strategies for data dissemination
and clinical application**

Attempts at community antibiograms have primarily focused on compiling inpatient data from multiple facilities

Antibiograms from hospitals and nursing homes in SC¹

2017 South Carolina Statewide Antibiogram¹

Gram Negative Organisms	# isolates	Ampicillin	Ampicillin/sulbactam	Amoxicillin/clavulanate	Piperacillin/tazobactam	Cefazolin	Cefuroxime	Ceftriaxone	Ceftazidime	Cefepime	Aztreonam	Meropenem	Gentamicin	Tobramycin	Amikacin	Ciprofloxacin	Levofloxacin	Trimeth/sulfa	Nitrofurantoin
<i>Acinetobacter baumannii</i>	507	87	79			47	68	83			92	90	95	98	81	83	83		
<i>Enterobacter aerogenes</i> ²	996		85			50	83	87	98	84	100	99	98	99	96	97	97	19	
<i>Enterobacter cloacae</i>	1930		82			42	77	82	94	79	98	95	96	100	90	94	88	35	
<i>Escherichia coli</i>	33848	50	53	83	96	85	89	94	95	95	91	100	90	90	100	75	75	74	95
<i>Klebsiella oxytoca</i>	621		64	86	91	49	86	89	95	93	83	100	95	95	100	95	97	90	78
<i>Klebsiella pneumoniae</i>	9800		82	93	93	89	90	94	95	94	89	99	96	94	99	94	94	89	42
<i>Proteus mirabilis</i>	5020	85	94	98	99	90	97	98	98	98	92	100	93	93	100	77	80	81	
<i>Pseudomonas aeruginosa</i>	5211				91				88	87	73	92	89	97	96	80	77		

Gram Positive Organisms	# isolates	Oxacillin/nafcillin	Penicillin G	Ceftriaxone	Gentamicin (synergy)	Rifampin (synergy)	Levofloxacin	Clindamycin	Erythromycin	Tetracycline	Trimeth/sulfa	Nitrofurantoin	Linezolid	Vancomycin	Daptomycin			
MSSA	5181	100	19		97	100	62	77	58	92	99	91	100	100	99			
MRSA	6630				95	96	30	70	13	93	93	84	100	100	99			
Total <i>Staphylococcus aureus</i> ³	14647	50	9		97	98	52	73	36	93	96	89	100	100	99			
<i>Streptococcus pneumoniae</i>	609		87	93			99	81	48	78	74		100	100				
<i>S. pneumoniae</i> (meningitis)	510		60	89														

Plante JG. ICHE 2020; Bailey P. Antimicrobial Stewardship and Healthcare Epi 2023

Antimicrobial Stewardship Collaborative of South Carolina

Creation of State Antibiogram and Subsequent Launch of Public Health–Coordinated Antibiotic Stewardship in New Hampshire: Small State, Big Collaboration

NH state
antibiogram
from hospital
laboratories

Created clinical
messaging, both of
which were posted on
DPHS and sent it
through Health Alert
Network system

Table 1. Summary comparison of 2016 and 2017 antibiogram clinical messaging, New Hampshire

Infection	2016 antibiogram messaging	2017 antibiogram messaging
Urinary tract infection	<ul style="list-style-type: none">Asymptomatic bacteriuria should not be treated in most cases.Nitrofurantoin and cephalexin are most likely to be active against <i>Escherichia coli</i>.Fosfomycin can be considered for <i>E coli</i> and <i>Enterococcus</i> species.	<ul style="list-style-type: none">Nitrofurantoin and cephalexin are more likely to be active against <i>E coli</i>.Most <i>Enterococcus</i> species are susceptible to amoxicillin/ampicillin.¹Fosfomycin can be considered for <i>E coli</i> and <i>Enterococcus</i> species.Treatment for uncomplicated urinary tract infections can be as short as 3–5 days (depending on antibiotic). Treatment for complicated urinary tract infections or pyelonephritis can be as short as 7 days.²Asymptomatic bacteriuria should not be treated in most cases.
Pneumonia	<ul style="list-style-type: none">Azithromycin should not be prescribed if there is concern for pneumococcal pneumonia.Preferred antibiotics to treat pneumococcal pneumonia:<ul style="list-style-type: none">AmoxicillinAmoxicillin-clavulanateCefuroximeAvoid fluoroquinolones due to toxicity.Ceftriaxone PLUS doxycycline or azithromycin recommended for hospitalized patients with community-acquired pneumonia.	<ul style="list-style-type: none">Azithromycin should not be prescribed if there is concern for pneumococcal pneumonia.Preferred antibiotics to treat pneumococcal pneumonia:<ul style="list-style-type: none">AmoxicillinAmoxicillin-clavulanateCefpodoxime (changed from 2016 due to increasing resistance)³Avoid fluoroquinolones due to toxicity.Ceftriaxone PLUS doxycycline or azithromycin recommended for hospitalized patients with community-acquired pneumonia.⁴Vancomycin is not necessary for all episodes of hospital-acquired pneumonia.⁵Treatment for community-acquired pneumonia can be as short as 5 days. Treatment for hospital-acquired pneumonia is 7 days.³

Leeman JH, Public Health Reports 2022

Uropathogens differ in distribution and sensitivity between inpatient and ambulatory

Survey of urine cultures from pediatric patients found *E.coli* represented 30% of inpatient samples and 86% of ambulatory samples

Antibiotic	<i>E. coli</i> Hospital Susceptibility	<i>E. coli</i> Ambulatory Susceptibility
Ampicillin	39%	55%
Cefotaxime	97%	99%
Nitrofurantoin	97%	99%
Trimethoprim-sulfa	72%	79%

Dahle KW. JPIDS 2012

Building a true ambulatory antibiogram

Ambulatory stewardship program began partnership with Labcorp to explore production of an ambulatory antibiogram

Through partnership, Labcorp and Novant Health have been able to provide an ambulatory antibiogram annually to Novant providers

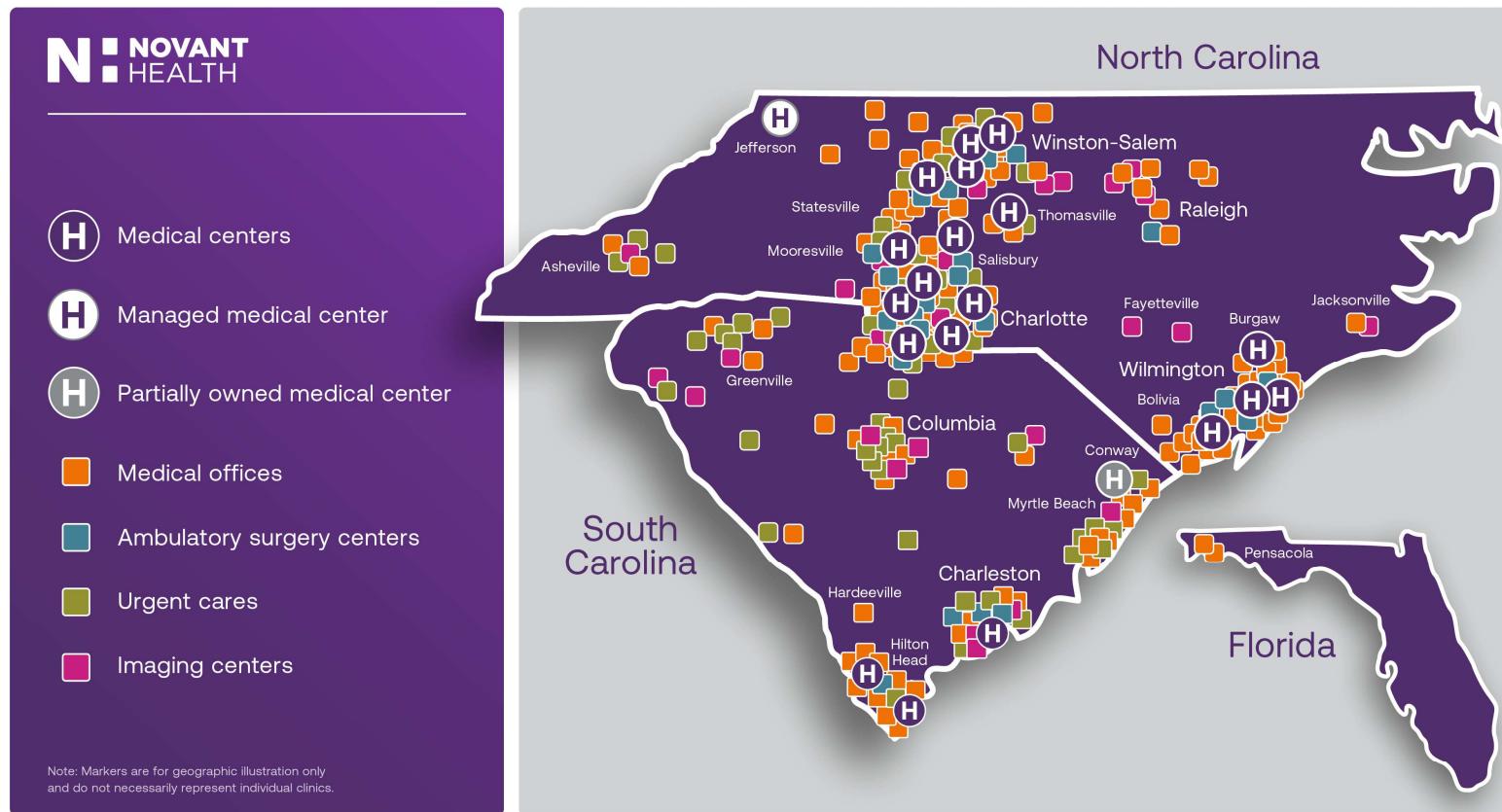
Built on scale, clinical oversight and stewardship principles

Labcorp antibiograms support smarter, more targeted empiric antibiotic prescribing grounded in local susceptibility and resistance trends

Data Foundation

- Labcorp processes more than 700,000 micro testing specimens each year for North Carolina
- The antibiogram report data is compiled and presented based on CLSI guidelines
- Excluded from the community dataset are hospitals, prisons and nursing homes

Clinical Governance & Quality Assurance


- Conduct biannual data extraction to support ongoing reporting needs
- Partner with internal technical directors to maintain high standards of data cleanliness and accuracy
- Oversee final review, sign-off and distribution of completed reports

Designed for Real-World Clinical Decision-Making

- Dynamic filtering by specimen type, county, organism, drug class and drug name – allowing clinicians to mirror real-world scenarios
- Interactive tooltips that surface organism–drug susceptibility details without leaving the report
- Intuitive color-coding to quickly identify high and low susceptibility rate

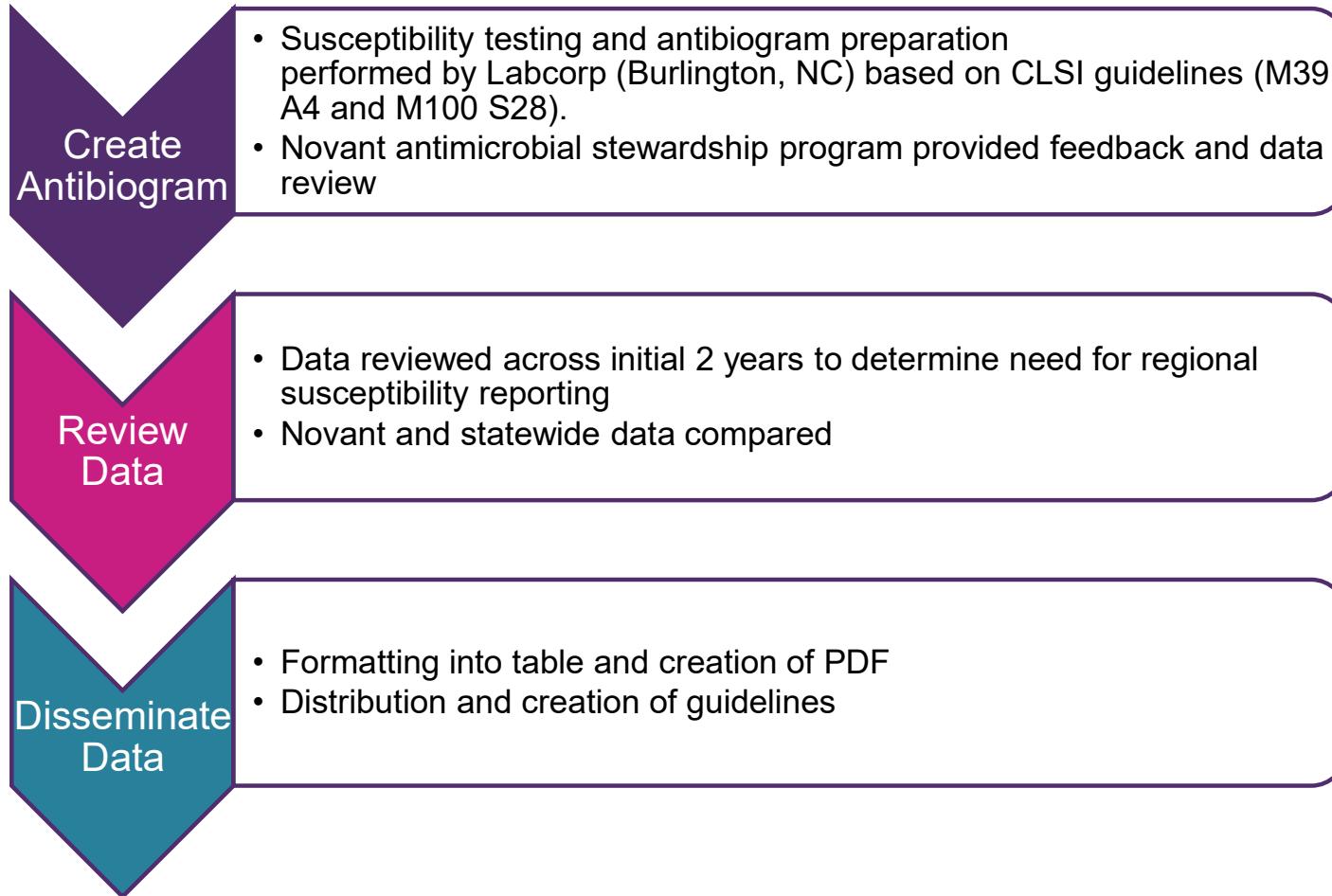
Novant has a large number ambulatory clinics across North Carolina

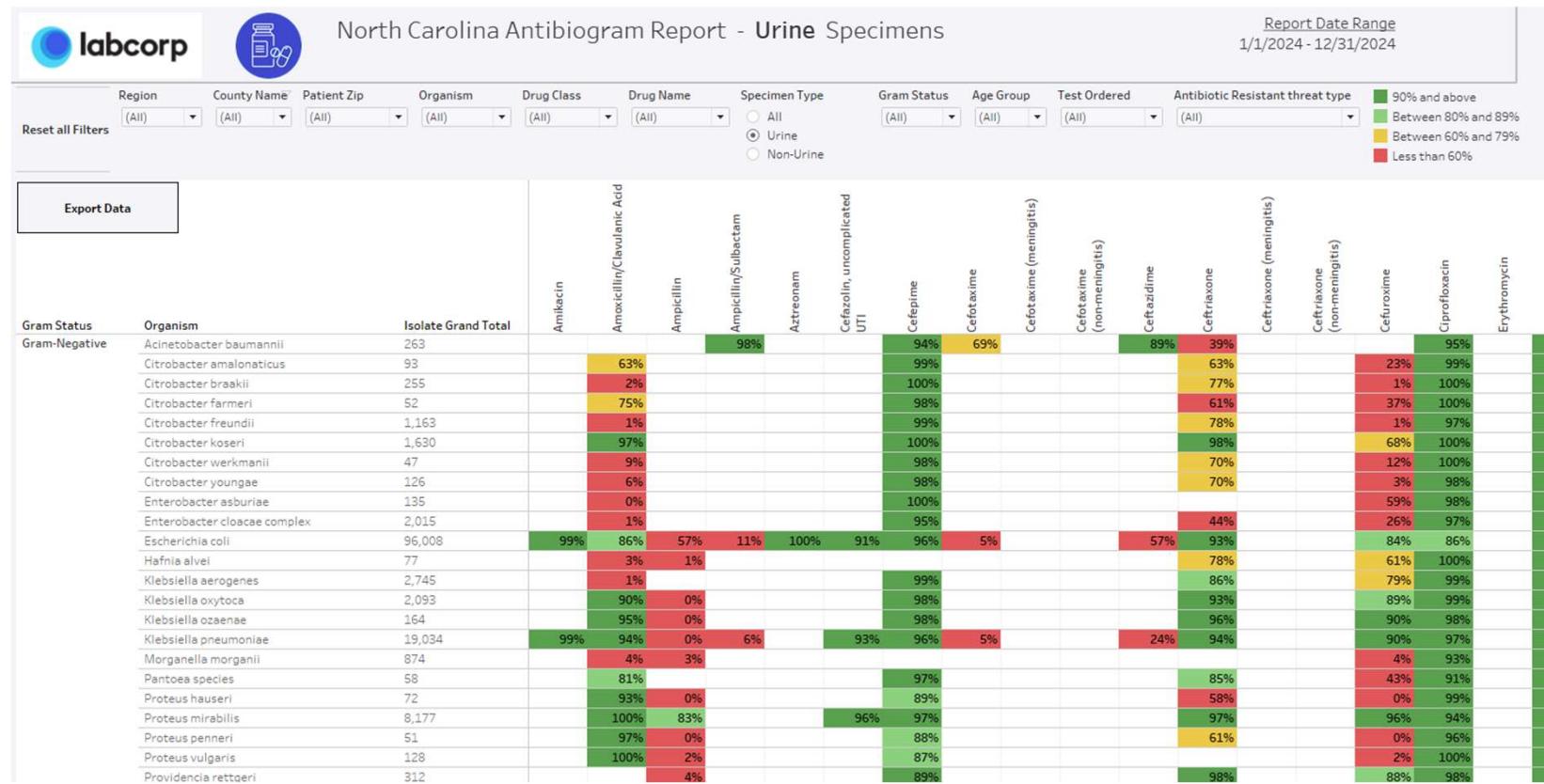
© Novant Health, Inc. 2025
2/26 • NH-1574903601

Antimicrobial stewardship program has been involved in building and distributing antibiograms for inpatient facilities

- Novant has 19 medical centers
- Annual inpatient facility antibiograms generated from Novant Health microbiology lab services data
- Each acute facility and emergency department has an antibiogram
- Flagship facilities also have unit antibiograms, such as pediatric and intensive care units
- Some utilize biennial data for isolates with limited annual numbers
- Accessible via intranet site or Sanford Guide with Novant Health (web or mobile)

Gram Negative Organisms	# Isolates	β-Lactams						FQs						AIDs			Unive. Only		
		PCNs			Cephalosporins			Carbapenems			FQs			AIDs			Unive. Only		
		Amphicillin	AmphiSLA	Pigf/SLA	Cefaclor	Cefazolin	Cefoperazone	Cefazidime/CS	Ceftriaxone	Cefuroxime	Ciprofloxacin	Loracarbef	Arribalin	Grazimecarb	Tobramycin	TMBP-SMK	Nisultamycin		
% Susceptible																			
<i>Enterobacter cloacae</i> *	30	—	—	—	93	—	—	97*	—	—	90	83	—	90	97	—	—		
<i>Enterobacter aerogenes</i> *	33	—	—	97	94	97	100	100	100*	100	94	—	—	100	100	—	—		
<i>Enterobacter cloacae</i>	58	—	—	—	—	93	—	—	99	94	93	—	97	97	90	26	—		
<i>Escherichia coli</i>	738	45	59	92	80*	83	86	100	100*	100	72	68	88	87	73	95	—		
<i>Klebsiella aerogenes</i> (Formerly <i>Enterobacter</i>)	51	—	—	—	—	100	—	100	67*	100	96	98	98	100	16	—	—		
<i>Klebsiella oxytoca</i>	42	—	74	—	73	83	95	100	100*	90	93	90	90	88	—	—	—		
<i>Klebsiella pneumoniae</i>	314	—	74	87	76	84	87	98	98*	81	79	79	95	95	83	22	—		
<i>Escherichia coli</i> *	43	—	9	98	—	—	—	100	—	88	82	78	99	95	81	—	—		
<i>Proteus mirabilis</i>	115	86	90	99	82	95	95	100	—	83	83	95	99	90	—	—	—		
<i>Pseudomonas aeruginosa</i>	215	—	—	77	—	—	86	97	—	88	82	78	99	97	—	—	—		
<i>Enterobacter cloacae</i>	67	—	—	—	—	—	—	100	—	94	91	—	100	81	100	—	—		
<i>Stenotrophomonas maltophilia</i> *	48	—	—	—	—	—	—	—	—	92	—	—	92	—	—	92	—	—	
% Susceptible																			
Gram Positive Organisms	# Isolates	β-Lactams						FQs						Miscellaneous			Unive. Only		
		PCNs			Cephalosporins			Lincosam.			Ciproflox.			Erythrom.			Lincosam.		
		Penicill.	Amphi.	Cefaclor	Cefazolin	Cefoperazone	Ceftriaxone	Lincosam.	Clindam.	Daptomycin	Doxycycline	Erythrom.	Fluconazole	Lincosam.	TMPS-MX	Vancycline	Nisultamycin		
% Susceptible																			
<i>Enterococcus</i> species - ALL	267	—	87	—	—	—	—	—	100	—	—	—	100	—	82	91	—	—	
<i>Enterococcus faecalis</i>	221	—	100	—	—	—	—	—	100	—	—	—	100	—	91	99	—	—	
<i>Enterococcus faecium</i>	41	—	17	—	—	—	—	—	—	—	—	—	100	—	37	—	—	—	
<i>Staphylococcus aureus</i> - ALL	597	—	—	57	—	—	—	72	100	95	—	100	—	100	—	—	—	—	
<i>Staphylococcus aureus</i> Methicillin Sensitive (MSSA)	227	—	—	100	—	—	—	71	100	99	—	100	—	99	100	—	—	—	
<i>Staphylococcus aureus</i> Methicillin Resistant (MRSA)	370	—	—	—	—	—	—	72	100	91	—	100	—	100	—	—	—	—	
<i>Staphylococcus epidermidis</i>	107	—	—	23	—	—	—	56	100	77	—	100	53	100	—	—	—	—	
<i>Staphylococcus hominis</i>	35	—	—	54	—	—	—	—	—	94	—	—	—	—	—	—	—	—	—
<i>Staphylococcus aureus</i> *	40	97	90	—	95	95	—	—	—	—	—	—	—	—	—	—	—	—	—
<i>Staphylococcus coralliphila</i> *	38	89	89	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
<i>Staphylococcus intermedius</i> *	36	94	92	—	97	97	—	—	—	—	—	—	—	—	—	—	—	—	—
<i>Staphylococcus mitis</i> *	36	66	75	—	94	75	86	—	—	—	—	—	100	100	100	100	100	100	100
<i>Staphylococcus pneumoniae</i> *	42	—	—	—	—	—	—	95	82	—	—	55	100	83	100	—	—	—	—
<i>Meningitis</i> *	48	75	—	—	88	—	—	—	—	—	—	—	—	—	—	—	—	—	—
<i>Nonmeningitis</i> *	46	94	—	—	90	—	—	—	—	—	—	—	—	—	—	—	—	—	—


The % Susceptible for each organism/antimicrobial combination was generated by including the first isolate of that organism encountered on a given patient.


R indicates resistant.

* Data from Jan 2024 through Oct 2024

* Extrapolated from inpatient susceptibilities

Overview of creation and distribution of ambulatory antibiogram

Ambulatory Urinary Antibiogram - Adult

Data from ambulatory sites, January - December 2022

Gram-negative	Total Isolates	Amoxicillin	Amox/clav	Cephalexin*	Ceftriaxone^	Nitrofurantoin	TMP/SMX	Ciprofloxacin*
<i>Citrobacter koseri</i>	1,481	NS	98%	NS	98%	91%	99%	100%
<i>Enterobacter cloacae</i> complex	1,532	NS	NS	NS	NS	70%	92%	97%
<i>Escherichia coli</i>	88,223	60%	87%	93%	95%	98%	82%	87%
<i>Klebsiella aerogenes</i>	5,199	NS	NS	NS	89%	22%	98%	99%
<i>Klebsiella oxytoca</i>	1,474	NS	93%	--	94%	88%	95%	99%
<i>Klebsiella pneumoniae</i>	15,772	NS	96%	96%	96%	36%	93%	98%
<i>Morganella morganii</i>	771	NS	NS	NS	NS	NS	86%	91%
<i>Proteus mirabilis/penneri</i>	7,467	85%	100%	96%	97%	NS	92%	94%
<i>Pseudomonas aeruginosa</i>	2,716	NS	NS	NS	NS	NS	NS	92%
<i>Serratia marcescens</i>	663	NS	NS	NS	93%	NS	100%	98%

Gram-positive	Total Isolates	Amoxicillin	Oxacillin	Nitrofurantoin	TMP/SMX	Ciprofloxacin*	Levofloxacin*
Coag-neg <i>Staphylococcus</i> spp.	6,315	NS	56%	99%	81%	77%	78%
<i>Enterococcus faecalis</i>	13,529	99%	NS	99%	NS	93%	94%
<i>Enterococcus faecium</i>	344	42%	NS	37%	NS	41%	42%

Textured shading denotes preferred agent for uncomplicated cystitis

The first-line recommendations for adults with uncomplicated UTI (e.g. cystitis in women) are trimethoprim-sulfamethoxazole or nitrofurantoin.

If a cephalosporin is needed, cephalexin is an appropriate choice based on susceptibility and pharmacokinetic data and should be given for 5-7 days.

*Cefazolin susceptibility may be used as surrogate for cefaclor, cefdinir, cefpodoxime, cefprozil, cefuroxime, cephalexin, and loracarbef for uncomplicated UTIs

[^]Ceftriaxone susceptibility should not be used to infer cefdinir susceptibility

*FDA recommends avoiding fluoroquinolones for uncomplicated UTI unless no other treatment options available because of the risk of serious side effects outweighing benefit

NS = non-susceptible; UTI = urinary tract infection

Creation of
Antibiogram

Ambulatory Urinary Antibiogram - Pediatric

Data from ambulatory sites, January - December 2022

Gram-negative	Total Isolates	Antibiotic Susceptibility (%)						
		Amoxicillin	Amox/clav	Cephalexin*	Ceftriaxone^	Nitrofurantoin	TMP/SMX	Ciprofloxacin*
<i>Escherichia coli</i>	1858	63%	90%	95%	97%	98%	84%	93%
<i>Klebsiella pneumoniae</i>	177	NS	94%	94%	95%	28%	89%	99%
<i>Proteus mirabilis/penneri</i>	79	90%	100%	99%	100%	NS	92%	97%
Gram-positive	Total Isolates	Antibiotic Susceptibility (%)						
		Amoxicillin	Oxacillin	Nitrofurantoin	TMP/SMX	Ciprofloxacin*	Levofloxacin*	
<i>Coag neg Staphylococcus</i> spp.	184	NS	61%	100%	89%	95%	96%	
<i>Enterococcus faecalis</i>	232	97%	NS	100%	NS	97%	98%	

Textured shading denotes preferred agent for uncomplicated cystitis

*Cefazolin susceptibility may be used as surrogate for cefaclor, cefdinir, cefpodoxime, cefprozil, cefuroxime, cephalexin, and loracarbef for uncomplicated UTIs

[^]Ceftriaxone susceptibility should not be used to infer cefdinir susceptibility

*FDA recommends avoiding fluoroquinolones for uncomplicated UTI unless no other treatment options available because of the risk of serious side effects outweighing benefit

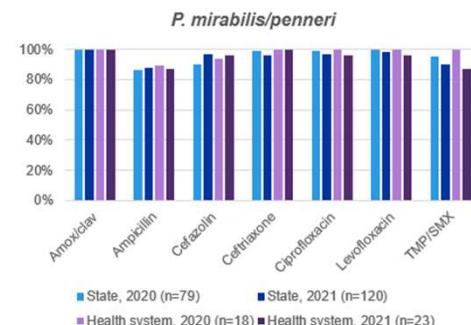
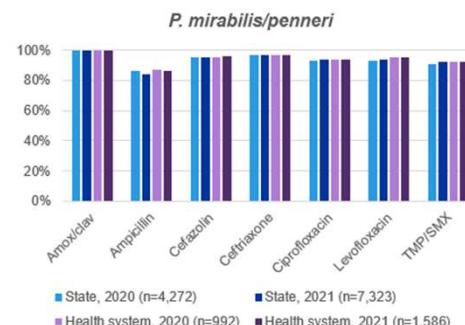
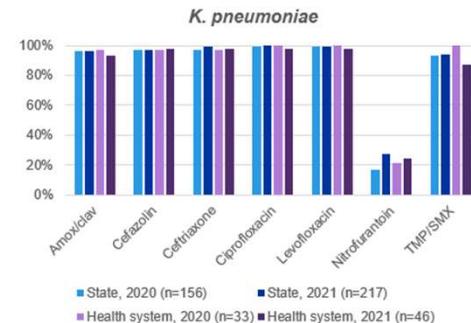
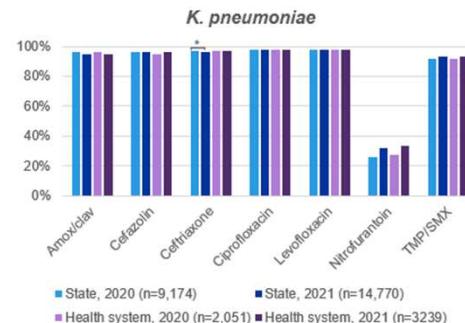
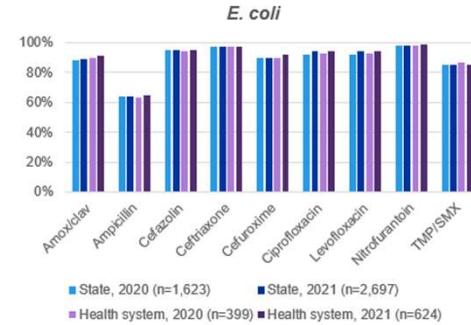
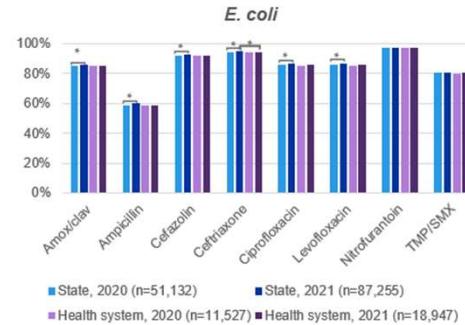
NS = non-susceptible; UTI = urinary tract infection

Comparison to inpatient susceptibilities

- Inpatient facilities showed a broader range of susceptibilities compared to regional ambulatory data.

Antibiotic	Novant Hospital Susceptible (range)	Novant Ambulatory Susceptible
Cefazolin	85 (80-91)%	93%
Ceftriaxone	87 (83-92)%	95%
Ciprofloxacin	74 (70-79)%	87%

Organisms

Comparison of state-wide vs. institutional isolates across 2 yrs

Labcorp team member provided statistical analysis of data

Isolates from 700+ Novant Health Clinics represented 22% of total samples

Susceptibility was similar between NH and state-wide data except for ceftriaxone (94% vs. 95%; p<.001) in *E.coli*

Analyzing Regional Differences

Susceptibility rates by region were similar in NH and state-wide data for *E. coli*, *K. pneumoniae*, and *P. mirabilis*

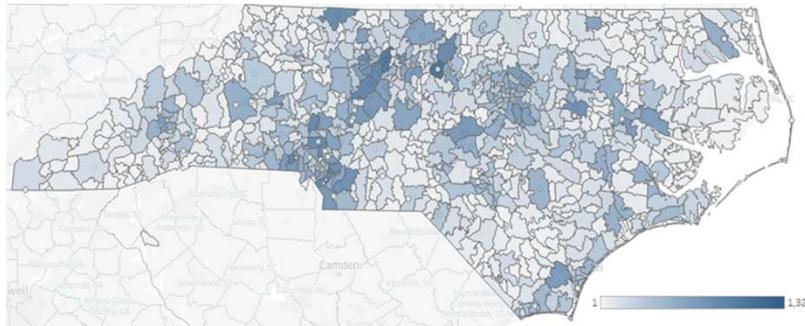
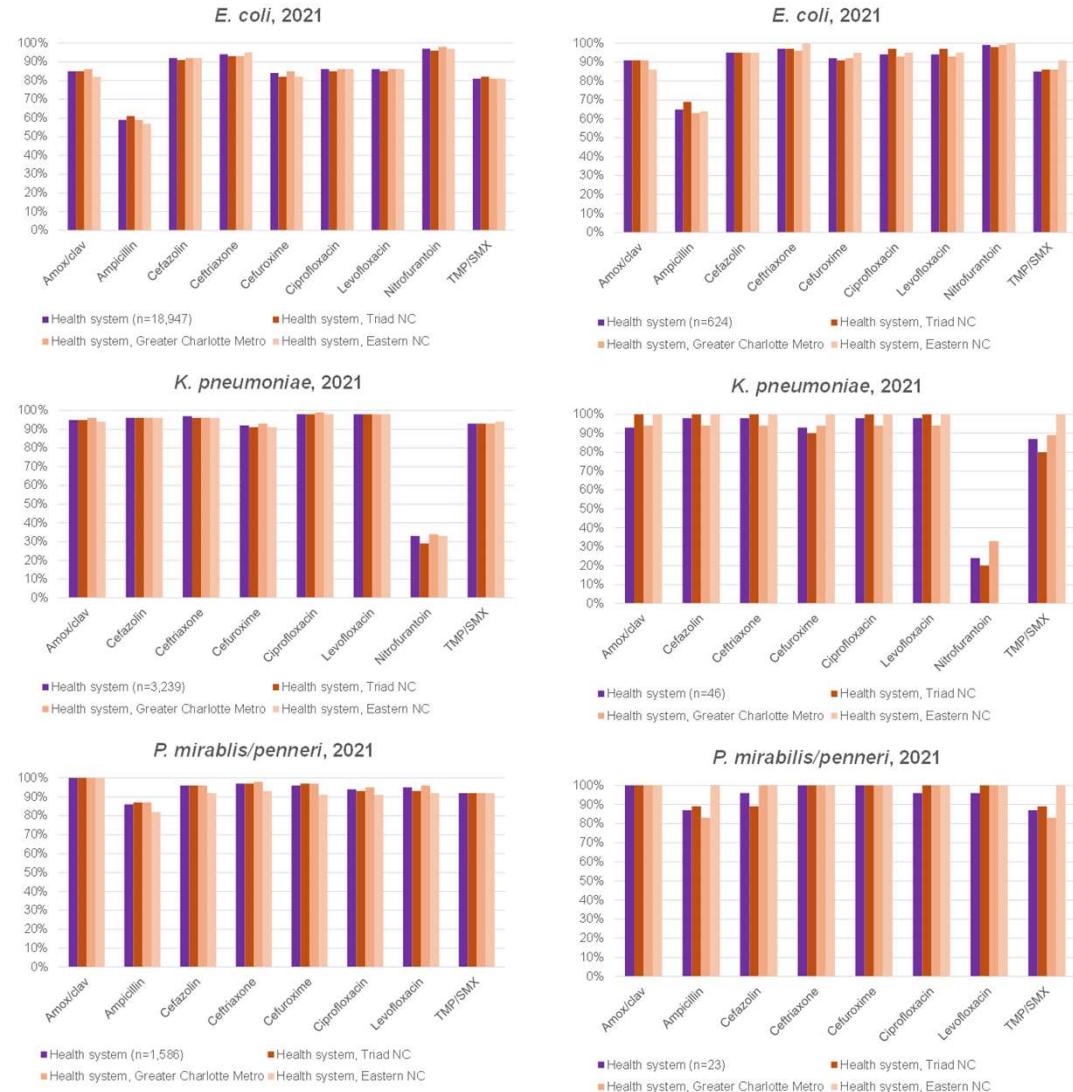
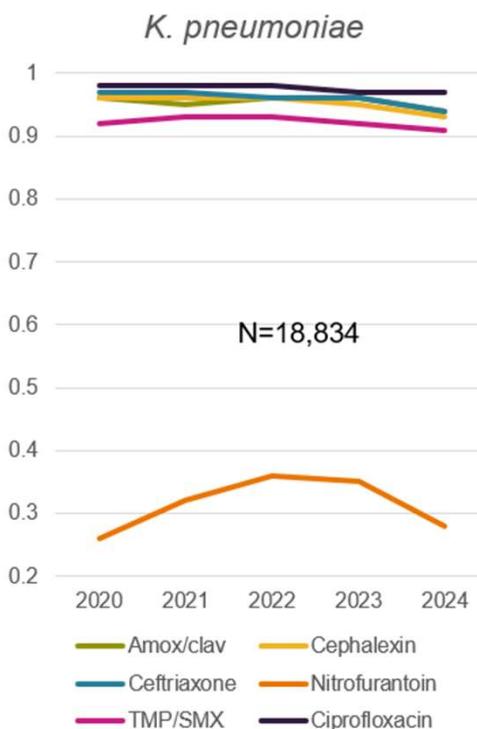
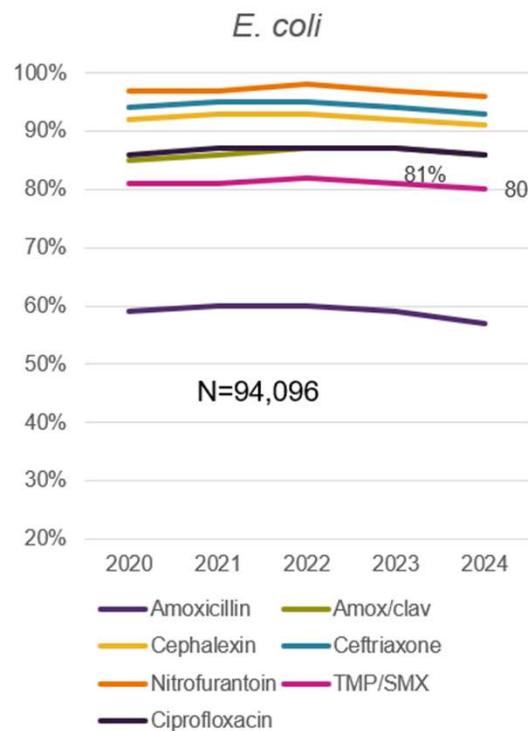





Figure 2. Heat map of urine culture isolates processed by Labcorp in 2021

Annual analysis of ambulatory susceptibility data by ASP

Adult Susceptibility Trends

Evaluating non-urinary samples

Goal to incorporate local susceptibilities into recommendations for SSTI and respiratory infections

Regional differences in gram positive organisms may be more significant than urinary pathogens

- In a compiled antibiogram from 9 hospitals, *S. pneumoniae* susceptibility to penicillin still differed locally compared to regional data (49% vs. 62%)¹

Non-urinary isolates require additional analysis

- Consider site / specimen source
- Differences in MSSA vs. MRSA
- Consideration of adult vs. pediatric

Ambulatory Non-urinary Antibiogram

Data from North Carolina ambulatory sites submitted to Labcorp, January - December 2024

Gram-positive	Total Isolates	Antibiotic Susceptibility (%)									
		Amoxicillin	Cephalexin ¹	Ceftriaxone (IV/IM only) ²	Clindamycin	Azithromycin	Levofloxacin	Linezolid	Penicillin	Tetracycline	TMP/s
<i>Enterococcus faecalis</i>	790	99%	NS	NS	NS	-	-	-	-	-	NS
<i>Enterococcus faecium</i>	30	53%	NS	NS	NS	-	-	-	-	-	NS
<i>Staphylococcus aureus</i> , all	15,509	-	61% ³	-	80%	-	-	100%	-	89%	86%
Methicillin susceptible <i>S. aureus</i> (MSSA)	9,446	-	100% ³	-	80%	-	-	100%	-	90%	96%
Methicillin resistant <i>S. aureus</i> (MRSA)	6,081	-	NS	-	79%	-	-	100%	-	88%	see note
<i>Staphylococcus aureus</i> , all adult	13,807	-	60% ³	-	79%	-	-	100%	-	89%	85%
Methicillin susceptible <i>S. aureus</i> (MSSA)	8,276	-	100% ³	-	79%	-	-	100%	-	90%	96%
Methicillin resistant <i>S. aureus</i> (MRSA)	5,547	-	NS	-	79%	-	-	100%	-	87%	see note
<i>Staphylococcus aureus</i> , all peds	1,702	-	69% ³	-	84%	-	-	100%	-	89%	89%
Methicillin susceptible <i>S. aureus</i> (MSSA)	1,170	-	100% ³	-	84%	-	-	100%	-	87%	96%
Methicillin resistant <i>S. aureus</i> (MRSA)	534	-	NS	-	84%	-	-	100%	-	92%	see note
<i>Streptococcus agalactiae</i> (Group B Strep)	168	S	S	100%	50%	-	-	-	S	-	-
<i>Streptococcus anginosus</i>	36	-	-	100%	81%	69%	97%	-	100%	-	-
<i>Streptococcus pneumoniae</i> (non-meningitis)	265	98% ⁴ high dose	-	97%	-	68%	99%	-	-	83%	82%

In progress!

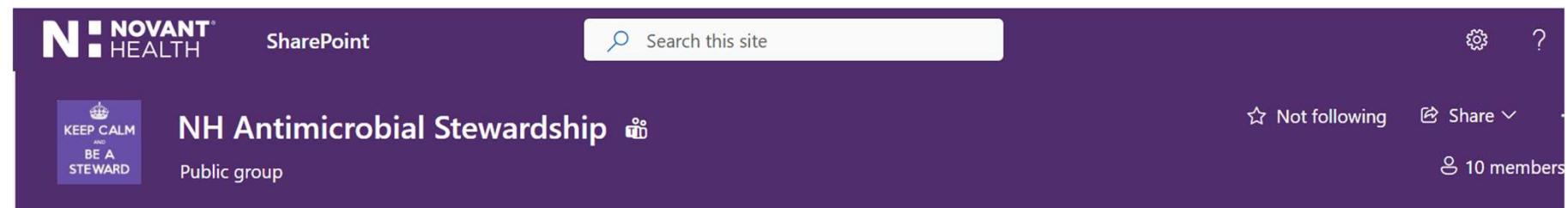
Gram-negative	Total Isolates	Amoxicillin	Amox/clav	Cefazolin	Ceftriaxone (IV/IM only) ²	Ciprofloxacin	Levofloxacin	Tetracycline	TMP/SMX
<i>Escherichia coli</i>	1,863	54%	83%	92%	87%	80%	77%	80%	
<i>Klebsiella aerogenes</i>	321	NS	NS	—	100%	97%	95%	100%	
<i>Klebsiella oxytoca</i>	521	NS	97%	97%	100%	97%	95%	100%	
<i>Klebsiella pneumoniae</i>	773	NS	91%	92%	97%	91%	83%	90%	
<i>Morganella morganii</i>	187	NS	NS	—	96%	95%	63%	93%	
<i>Proteus mirabilis</i>	1,016	84%	100%	97	93%	97%	NS	91%	
<i>Pseudomonas aeruginosa</i>	1,916	NS	NS	NS	95%	87%	NS	NS	
<i>Serratia marcescens</i>	590	NS	NS	96%	99%	93%	22%	100%	

In progress!

Disseminate
Data

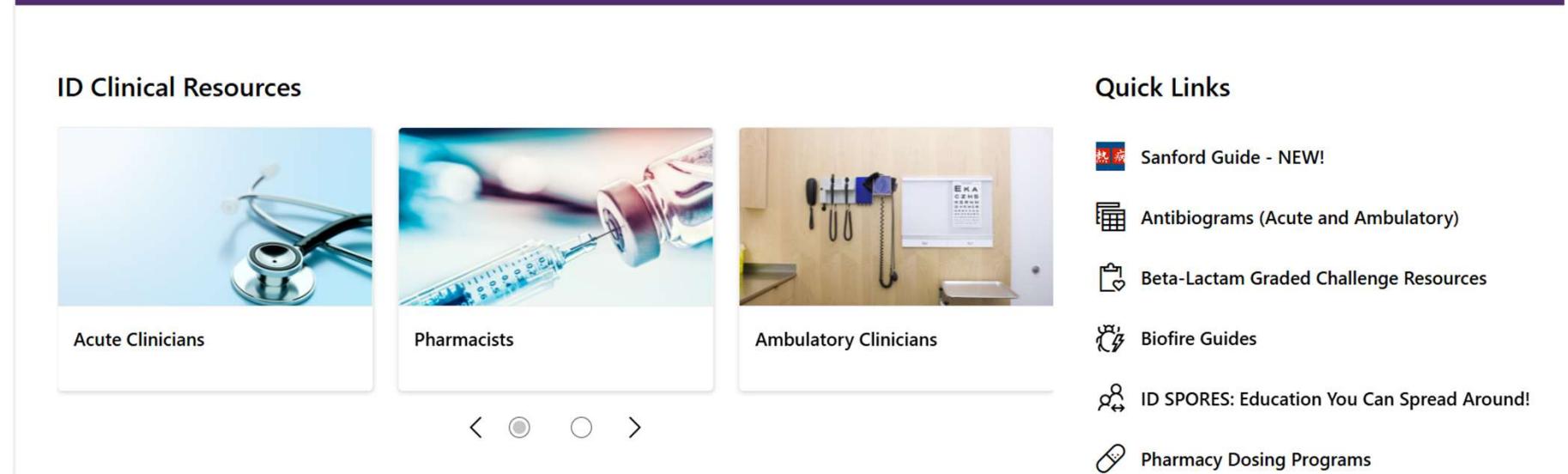
Disseminating Antibiogram Data

**Health system
resources**



Commercial platforms

Labcorp resources


Facility specific platforms: I-connect and Epic link to ASP website

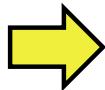
Novant Health SharePoint Search this site

Not following Share 10 members

NH Antimicrobial Stewardship Public group

ID Clinical Resources

- Acute Clinicians
- Pharmacists
- Ambulatory Clinicians

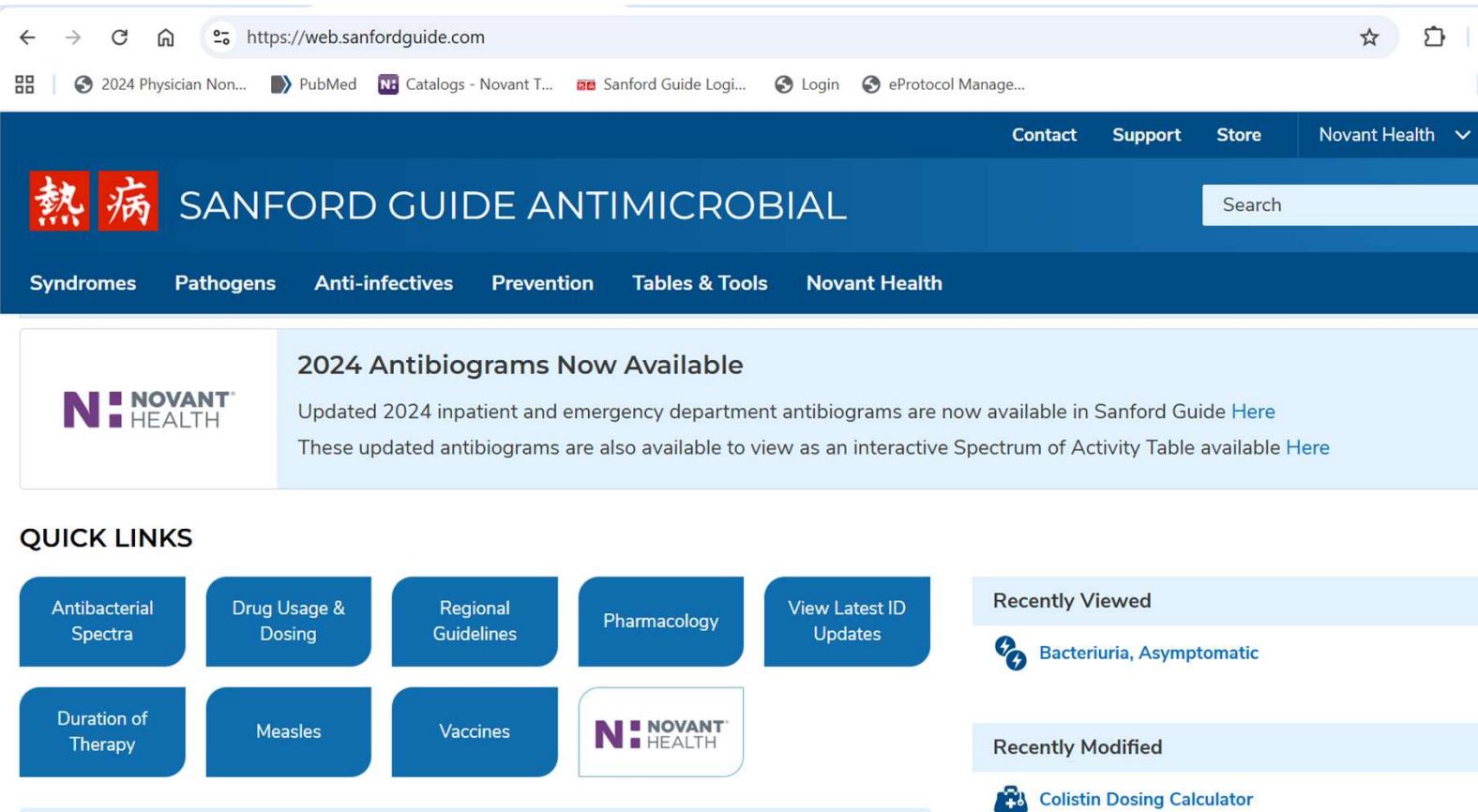

Quick Links

- Sanford Guide - NEW!
- Antibiograms (Acute and Ambulatory)
- Beta-Lactam Graded Challenge Resources
- Biofire Guides
- ID SPORES: Education You Can Spread Around!
- Pharmacy Dosing Programs

Clinical guidelines: Quick Reference PDF

Infectious Disease

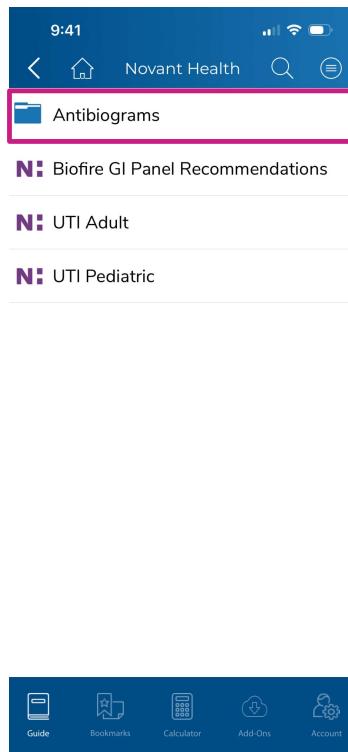
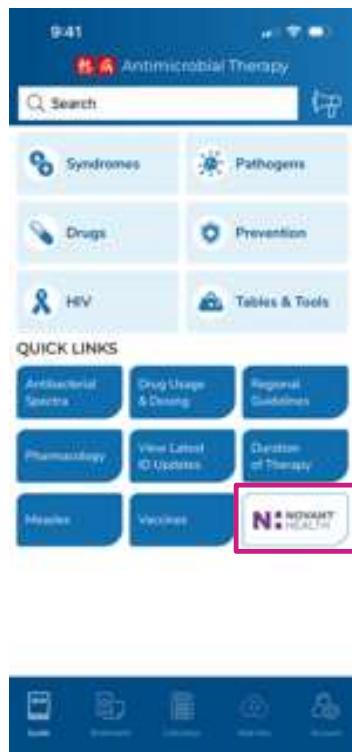
Antibiotic Treatment Guide (Adult)
Antibiotic Treatment Guide (Pediatric)

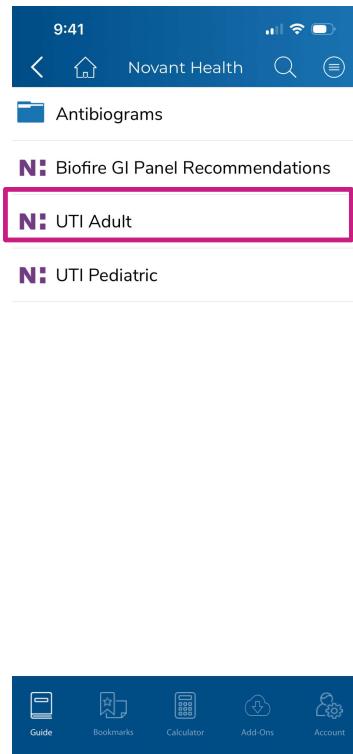

Novant Health ADULT Ambulatory Empiric Antibiotic Treatment Guide

These guidelines are based on local and national published guidelines and the antibiogram at Novant Health. Guidelines cannot account for all factors in an individual patient and should be used in conjunction with clinical judgement. All doses reflect normal renal and hepatic function. Durations listed assume improvement within 48-72h of starting antibiotics.

Diagnosis	First-Line Therapy	Alternative Therapy	Clinical Pearls
Acute Sinusitis	Amoxicillin 875 mg – 2 g BID x 5-7 days OR <i>Comorbidity*</i> , > 65y, severe sinusitis, antibiotics in the past 30d: Amoxicillin/clavulanate 875 mg/125 mg BID x 5 – 7 days Duration: 5-7 days	PCN allergy: Doxycycline 100 mg BID or 200 mg daily x 5 – 7 days *Comorbidity: Alcoholism; asplenia; chronic heart/lung/liver/kidney disease; DM; immunosuppression; malignancy	Consider intranasal steroid +/- intranasal saline irrigation if history of allergic rhinitis. Avoid azithromycin due to local <i>S. pneumoniae</i> resistance >25%. Avoid trimethoprim-sulfamethoxazole due to <i>S. pneumoniae</i> and <i>H. influenzae</i> resistance
Community Acquired Pneumonia (CAP)	Amoxicillin 1 g TID x 5 days <i>Comorbidity*</i> (see above), tobacco use or antibiotic in past 3 months: Amoxicillin/clavulanate (875/125 mg or 2 g/125 mg) BID PLUS doxycycline 100 mg BID OR azithromycin 500 mg x 3 days (for atypical coverage) Duration: 5 days (except azithromycin)	Mild PCN allergy (non-type 1) Use 2 nd or 3 rd gen cephalosporin (cefuroxime, cefdinir, cefpodoxime) in place of amoxicillin or amoxicillin/clavulanate Mod/Severe PCN allergy OR high concern for atypical pneumonia: Doxycycline 100 mg BID	Avoid azithromycin monotherapy due to local <i>S. pneumoniae</i> resistance >25%. Avoid trimethoprim-sulfamethoxazole due to <i>S. pneumoniae</i> and <i>H. influenzae</i> resistance
Group A strep (GAS) pharyngitis	Amoxicillin 1 g daily or 500 mg BID OR penicillin 500 mg BID Not tolerating PO or concern for compliance: Penicillin G benzathine (Bicillin L-A) 1.2 million units IM x 1 Duration: 10 days	Mild PCN allergy: Cephalexin 500 mg BID OR cefadroxil 1 g daily Mod/Severe PCN allergy: Azithromycin 500 mg on day 1 then 250 mg daily on day 2-5 OR clindamycin 300 mg TID x 10 days OR	Testing should be performed prior to treatment since 35-50% of patients identified by scoring systems (e.g. Centor) will have viral etiology
Skin/Soft Tissue Infection (SSTI)	Impetigo: Mupirocin 2% ointment TID or cephalexin 500 mg TID Non-purulent cellulitis (including ecthyma and erysipelas): Cephalexin 500 mg TID Purulent cellulitis / abscess: I&D +/- Trimethoprim-sulfamethoxazole 160 mg TMP (1 DS) BID OR doxycycline 100 mg BID Duration: Cellulitis or Impetigo (topical therapy): 5 days Ecthyma or Impetigo (oral therapy): 7 days	PCN allergy: Clindamycin 450 mg TID OR (purulent) Doxycycline 100 mg BID Human/Animal Bite: Amoxicillin/clavulanate 875 mg BID PCN allergy: Clindamycin 450 mg TID + TMP/SMX 160 mg BID Antibiotic prophylaxis (3-5 days): hand/facial wounds, penetrating cat bite wounds, crush深深 tissue wounds, joint penetration, or immunocompromise	Oral antibiotics are recommended for most abscesses based on improved clinical resolution and reduced risk of recurrence. It is reasonable to withhold oral antibiotics for small, single abscesses (<2cm) in patients who have complete I&D and have no comorbidity, signs of systemic illness, or risk factors for transmission.
UTI (does not include pregnant women, renal transplant or prostatitis/STI treatment)	Uncomplicated UTI (Cystitis): Nitrofurantoin (Macrobid) 100 mg BID OR cephalexin 500 mg BID Duration: Nitrofurantoin 5 days, TMP/SMX 3 days, cephalexin 3-7 days Complicated UTI / Pyelonephritis: Ciprofloxacin 500mg BID or Levofloxacin 750mg daily Duration: Cipro/Levo 7 days, Cephalosporin 10 days, TMP/SMX 14 days	Uncomplicated UTI (Cystitis): TMP-SMX 160 mg TMP (1 DS) BID Complicated UTI / Pyelonephritis: Ceftriaxone 1g IM x 1 may be given prior to starting oral therapy For mild illness, can consider cephalexin 500 mg TID	<i>E. coli</i> were 93% sensitive to cephalexin, 97% sensitive to nitrofurantoin, and 81% sensitive to TMP/SMX in 2021 ambulatory adult urine cultures.

November 2022



Commercial Platforms


The screenshot shows the homepage of the Sanford Guide Antimicrobial website. The top navigation bar includes links for Contact, Support, Store, and Novant Health. The main header features the Sanford Guide logo with Chinese characters (热病) and the text "SANFORD GUIDE ANTIMICROBIAL". Below the header is a navigation menu with links to Syndromes, Pathogens, Anti-infectives, Prevention, Tables & Tools, and Novant Health. A prominent callout box in the center announces "2024 Antibiograms Now Available" with a link to "Here". The Novant Health logo is visible in the bottom right corner of the main content area. On the left, a "QUICK LINKS" sidebar offers links to Antibacterial Spectra, Drug Usage & Dosing, Regional Guidelines, Pharmacology, View Latest ID Updates, Duration of Therapy, Measles, and Vaccines. On the right, sections for "Recently Viewed" (Bacteriuria, Asymptomatic) and "Recently Modified" (Colistin Dosing Calculator) are displayed.

Antibiogram on commercial platform

Viewing guideline on commercial platform

Supporting stewardship, surveillance and prescribing decisions

Practical use cases across stewardship, surveillance and clinical care

Stewardship & prescribing policy

- Informing antimicrobial stewardship programs – by empiric prescribing in local resistance trends to improve care and antibiotic appropriateness
- Establishing evidence-based prescribing protocols

Epidemiology & community surveillance

- Identifying organisms circulating within a specific county
- Monitoring geographic variation in pathogen prevalence

Clinical decision support

- Determining susceptibility of a specific drug
- Reviewing organism susceptibility across all tested agents

Building empiric therapy with real-world, local resistance data.

Acknowledgements

Labcorp and analysis of antibiogram: Dusica Curanovic, Chris Garcia, Catherine Wright , Samia Naccache, Kristen Smith, Howard Engler

Novant Health and Antimicrobial Stewardship Team: Becky DeCamillis, Crystal Redfern, Shanae Foxx, Kiet Nguyen

Thank you!!!

kbflett@novanthealth.org

